
jadice server

Juli 2013

jadice® server

Version 4.5.1.0

Developer's Guide

levigo solutions gmbh
Bebelsbergstraße 31
D-71088 Holzgerlingen
Phone +49 (0)7031 / 41 61 - 20
Fax +49 (0)7031 / 41 61 - 21
E-Mail: solutions@levigo.de
Web: www.levigo.de

j a d i c e d o c u m e n t p l a t f o r m

All brand and product names mentioned are trademarks of the respective copyright holders and are accepted as such.

jadice server

Table of Contents
1. General...4

1.1. About this documentation..4
1.2. Feedback..4
1.3. Online-Service...4
1.4. About the jadice product family..4

2. jadice server...6
2.1. The product's concept...6
2.2. Possible applications of jadice server..6

2.2.1. Unification and long time archiving...6
2.2.2. Tiling..6
2.2.3. Virtual documents...7
2.2.4. Permanent anchoring of annotations..7
2.2.5. Extraction of meta data...7
2.2.6. Unification of e-mails...7
2.2.7. Central document printing...7
2.2.8. Processing of packed files..8
2.2.9. Data validation..8

3. System architecture..9
3.1. Functionality...9

4. Installation and configuration................................11
4.1. Server..11

4.1.1. Licence file...11
4.1.2. Manual download for hyphenation support....................................11
4.1.3. Configuration of the messaging system...11
4.1.4. Configuration of embedded message broker.................................12
4.1.5. Configuration wrapper...13
4.1.6. Configuration LibreOffice...14
4.1.7. Configuration MS Office...14
4.1.8. Configuration MS Outlook..15
4.1.9. Configuration MS Project...15
4.1.10. Configuration logging..16
4.1.11. Configuration Ghostscript...16
4.1.12. Configuration Multi-VM-Mode...16
4.1.13. Configuration web service interface..17
4.1.14. Configuration security interface..17

4.2. Client..17
4.3. Installation in the developing environment Eclipse...................................17

4.3.1. Server..17
4.3.2. Client...18

5. Application / Functionality.....................................19
5.1. Job definition client-sided...19
5.2. Job definition server-sided...19
5.3. Application scenarios including code examples..19

5.3.1. Create a server job..20
5.3.2. Create a JobListener..20
5.3.3. Configuration of Limits..21
5.3.4. Identification of unknown input data..22
5.3.5. Extraction of document information..23
5.3.6. Merging of multiple PDF documents...24
5.3.7. Converting to TIFF..25
5.3.8. Permanent anchoring of annotations..25
5.3.9. Unpacking of archive files..26
5.3.10. Converting unknown input data in a unified format (PDF)............27
5.3.11. Converting Office-documents to PDF..28
5.3.12. Converting e-mails to PDF..28
5.3.13. Controlling of external programmes..31

jadice server Page 2 of 53

D e v e l o p e r ' s G u i d e

jadice server

5.4. Implementation of own nodes / workers...31
5.4.1. Node class..31
5.4.2. Worker class...32

6. Web service Interface...34
6.1. Structure of a SOAP-message...34

6.1.1. Request by means of a template..34
6.1.2. Job definition within the SOAP request...35

6.2. Structure of a SOAP response..36
6.3. Definition of job-templates...37
6.4. Generation of web service clients...38

6.4.1. JAX-WS reference implementation..39
6.4.2. Apache Axis2..40

7. Security-Interface...41
7.1. Configuration..41

7.1.1. Authentication..41
7.1.2. Restrictions...42

7.2. Client-sided use...43

8. Monitoring..44

9. Troubleshooting..46

10. Technical data...51

11. Document history...52

jadice server Page 3 of 53

D e v e l o p e r ' s G u i d e

jadice server

1. General

1.1. About this documentation

This guide in hand is an introduction to the technical coherences of the jadice
server®.

This documentation is basically limited to the areas which are interesting to de-
velopers (subsequently called integrators) in order to integrate jadice server® in
their own applications.

An API reference in javadoc format is made available as a separate document.

1.2. Feedback

If you come across any errors when using this documentation or if you like to sug-
gest any improvements, please send a possibly detailed message to
solutions@levigo.de.

Your feedback helps us in further developing this documentation. Thanks a lot.

1.3. Online-Service

For developers and integrators we offer the levigo support center at
https://levigo.de/support/ where you can report your requests, problems, sug-
gestions etc concerning the jadice document platform and address them to the
jadice developers. You will be automatically informed about all responses, the status
of the problem and its solution via email. Of course you can add additional informa-
tion or consideration, too. If interested please contact us at solutions@levigo.de.

In the jadice knowledgebase at https://levigo.de/info/display/JKB/Home
you can find different background articles, tips and tricks. They provide valuable in-
formation beyond the contents of this documentation and contribute towards a bet-
ter understanding of the topics surrounding the jadice product family.

Additionally, we provide a variety of open source projects and code examples in our
github repositories at https://github.com/levigo/. You can use them for
your own projects freely. Of course we are glad if you wish to contribute to the de-
velopment and send us a pull request.

1.4. About the jadice product family

The jadice document platform is a technology developed on JAVA with a central
component for document processing. Due to its flexibility as an easy-to-integrate
toolbox it may be applied in different ways and it offers the basis for individual
archiving client and server solutions in the professional document management.

The document viewer jadice viewer, the former starting product of the jadice
family, has remained an essential part of the jadice document platform – however,
with an advanced and expanded functional range.

Based on the jadice document platform there also exist the products jadice server
and jadice web toolkit.

jadice server is a component for any server-sided processing of data streams. This
all-in-one solution conceived for the documents' processing is operated by simple
workflow instructions and cascaded commands. It is possible at any time to change
the way of processing since both the origin of the incoming data stream and the
output of the processing result may be freely selected.
jadice server is able to react dynamically on data and disposes of powerful modules
for format recognition. Its open interfaces allow the integration of further functions,
of any software and thus make it possible to cover new formats.

The jadice web toolkit is an easy-to-use and highly customizable portal solution
for document viewing and document editing. It runs entirely in the web browser

jadice server Page 4 of 53

D e v e l o p e r ' s G u i d e

https://github.com/levigo/
https://levigo.de/info/display/JKB/Home
mailto:solutions@levigo.de
https://levigo.de/support/
mailto:solutions@levigo.de

jadice server

and thus does not require a Java installation on the client. The jadice web toolkit
provides easy access and the best usability of the jadice features by using the
Google Web Toolkit.

jadice server Page 5 of 53

D e v e l o p e r ' s G u i d e

jadice server

2. jadice server

2.1. The product's concept

jadice server's main task is not to convert a document from type X to type Y. In-
stead it falls back amongst others on the functionality of the underlying jadice
document platform which provides many possibilities to convert formats en-
countered in long time archives.

Then it provides a flexible interface to applications which carry out the conver-
sion. This advantage relies amongst others on jadice server's platform independ-
ence. That means that jadice server may be installed on different platforms and so
it may communicate with a large number of applications.

For this jadice server offers interfaces to externally controlled third-party software.
Its control may either be realised directly in the JAVA interface or you can use the
COM-interface or write a batch-file.

Depending on the original's format the converting may be carried out either by a
software function (like e.g. Photoshop) which can display the original format or by
using an available image print driver. In both cases it is only important to define
jadice server's appropriate interfaces with the respective software.

Due to jadice server's two-staged architecture nearly any scalability may be
reached. It may be extended to any number of plug-ins to different applications.
Thus lots of clients may profit from the programmes installed on few computers (on
which jadice server is installed, too).

2.2. Possible applications of jadice server

The possible applications listed in this chapter describe the typical use cases covered
by jadice server. For the precise technical realisation it is referred to the appropriate
code examples in the chapter “Application scenarios including code examples” from
page 19 on.

Evidently it is not possible at this point to describe all applications offered by jadice
server. Besides the respective subtasks may be combined in such a way that they
cover precisely the given problem.

2.2.1. Unification and long time archiving

jadice server is suited for working with data which can't be directly displayed by a
client like e.g. office formats or special technical formats.

Since the server is responsible for the documents' converting the single clients on
the work stations are discharged and thus working on older, less powerful com-
puters is made possible. Additionally the programmes which are necessary for the
converting do not have to be installed on all clients but only on the jadice server.

Since these data are now provided in a standard format (e. g. as PDF/A or TIFF) the
programme which these files originally were made with does not have to be avail-
able any longer. Thus these documents are also appropriate for the long time
archiving.

Relevant code examples:

• Converting unknown input data in a unified format (PDF) (page 27)

• Converting Office-documents to PDF (page 28)

• Merging of multiple PDF documents (page 24)

• Converting to TIFF (page 25)

2.2.2. Tiling

A further possible application is the processing and editing of documents with a
large number or also a particularly large size of pages.

jadice server Page 6 of 53

D e v e l o p e r ' s G u i d e

jadice server

When working with very large documents in the jadice viewer or in the jadice web
toolkit jadice server offers the possibility to analyse documents by tiles, i.e. to load
and display in single sections. This is an advantage when large pages, like e.g. con-
struction plans or even only parts of a document with hundreds of pages, are to be
displayed.

2.2.3. Virtual documents

In contrast to this jadice server may also combine multiple documents to a large, lo-
gical document. So it is possible to combine staff files with time registration docu-
ments, sick notes and fuel receipts of a staff member in a unified file.

On the other hand it is also possible to divide large documents in single sub-docu-
ments in order to make them accessible for single departments.

Relevant code example:

• Merging of multiple PDF documents (page 24)

2.2.4. Permanent anchoring of annotations

If annotations are brought up on documents, it may be necessary to fix them per-
manently in the document, if the respective documents are to be forwarded to ex-
ternal places.

This may be necessary for different reasons. For one reason it is not granted that
external places may process the annotations' data format, so that a standard format
(like PDF) has to be accessed. It is also possible that some document's parts must
be “blackened” since they contain business confidential information or protected
private data. In this case it must be made sure that the external place does not
have the means to make the “blackened” information legible again.

Relevant code example:

• Converting to TIFF (page 25)

• Permanent anchoring of annotations (page 25)

2.2.5. Extraction of meta data

For a fast survey in a client it is not always necessary to transmit the complete doc-
ument. Instead it is sufficient if it gets meta data which characterize the document.

These may be used e.g. to decide from client-side which further processing steps
should be set off.

Relevant code example:

• Extraction of document information (page 23)

2.2.6. Unification of e-mails

For a legally accepted archiving of e-mails it is not only necessary to archive the
pure e-mail text but also its attachments. In order to make sure that the divers file
formats may be read in future too, these formats have to be brought into a stand-
ardised format, though. For this the PDF standard is very convenient.

Apart from this it is desirable that a survey of attachments is created automatically.
Both is performed by the jadice server.

Relevant code example:

• Converting e-mails to PDF (page 28)

2.2.7. Central document printing

Print jobs may be created on staff's working places. For this the API provides a large
number of possible settings. This configuration is transmitted to jadice server which
functions as central print server. In the data centre it takes over the print job and
passes it without loss on to the print cluster.

Since the processing done by the print driver takes centrally place with – depending
on the setting and desired print quality – possibly large print data streams, not only

jadice server Page 7 of 53

D e v e l o p e r ' s G u i d e

jadice server

the network load may be reduced but it is also possible to continue working on the
staff's working place immediately after starting the print job.

2.2.8. Processing of packed files

For transporting large files via internet it is sensible to pack and compress them as
archive files , e.g. as a zip file. However, this archive file must be unpacked before
processing. In order to automatise this procedure, jadice server may be used.

Relevant code example:

• Controlling of external programmes (page 26)

2.2.9. Data validation

All customer documents which are stored in a long time archive must meet the re-
quirements to be still readable in decades without any problems. For this an appro-
priate document format must be chosen.

When archiving it must additionally be made sure that the documents are complete
and sound and that they correspond formally to the technical specification.

With jadice server a processing step independent of the files' creation may be intro-
duced when importing which recognises file formats and calls up appropriate valida-
tion mechanisms against defined standards.

Thus defective files may be recognised in time and sorted out for being checked and
re-edited. So it is provided that - even in decades - documents in long time archives
will be available for editing.

jadice server Page 8 of 53

D e v e l o p e r ' s G u i d e

jadice server

3. System architecture
Jadice server may be used in a clustered way. Thus a high availability along with a
high performance may be realised. Jadice server is performed per server instance in
a JVM and administrates a pool of LibreOffice processes respectively different COM
servers. Using a messaging system (MOM) which serves as s transport layer clients
order the performance of jobs. The access by clients is done via a client library (see
chapter 4.2).

Since the messaging system is connected by the standardised JMS interface (Java
Message Service), message broker already used in the company may be embedded
into the system architecture.

Due to this architecture an automated load-balancing along with a high availability
may be realised with little effort.

3.1. Functionality

Jadice server is designed in such a way that the processing of documents and docu-
ment data is separated in jobs1 which are separated in single processing steps
(nodes2) thus describing a workflow.

Clients command the jobs' performance and transmit them by messaging system to
the jadice server.

Nodes are the single, individually defined processing steps which a job consists of.
They are connected amongst each other by bundles of data streams which trans-
port user data and meta data. Consequently the processing steps depend in regard
of content and order on the performing job.

The nodes differ from each other in their given task. Thus documents may be con-
verted in one node e.g. with LibreOffice, MS Office or the functionalities of the
jadice document platform, whereas in a different node documents are parted or
merged. Further nodes may edit meta data and format data. The print processing of
documents, the rasterization and providing of data as tile server and the classifica-
tion of data streams are further examples for nodes. Even the simple packing or un-
packing into or out from archives happens in such a processing step.

1 com.levigo.jadice.server.Job
2 com.levigo.jadice.server.Node

jadice server Page 9 of 53

D e v e l o p e r ' s G u i d e

Chart 2: Description of a job with single nodes

Chart 1: Messaging system as transport layer between clients and jadice server

jadice server

Here it is not firmly prescribed that each node has got exactly a predecessor or suc-
cessor. So there is already a predefined node3 which multiplies a data stream and
passes it on to various successor nodes and a node4 which has got various prede-
cessor nodes and which passes all incoming data streams on to only one successor.
The only condition to be respected when configuring a work flow is to avoid cycles
in the compiling of nodes.

3 com.levigo.jadice.server.nodes.MultiplexerNode
4 com.levigo.jadice.server.nodes.DemultiplexerNode

jadice server Page 10 of 53

D e v e l o p e r ' s G u i d e

jadice server

4. Installation and configuration

4.1. Server

jadice server runs from Java version 1.6.0 update 26 / Java version 1.7.0 Update 3
oder newer. For the installation first the distribution file (jadice-server-4.4.x.x-dis-
t.zip) has to be unpacked into an empty directory on the server's local disk. Any fol-
lowing files or folder names listed in this developer's guide are relative to this direct-
ory.

The installation / starting files are in the directory /bin.

To install and manage jadice server as a Windows service the following files are
provided:

install.bat Installs jadice server as Win32-service “levigo jadice server 4” .

start.bat Starts the service.

stop.bat Stops the service.

Executing these batch files requires administrative rights.

Alternatively the server may be started with the script jadice-server.bat.

For Linux-based operating systems the script jadice-server.sh is to be used.

At the start a console is opened; using the key combination CTRL-C ends the server.

All jar-files required by the server are in the directory /server-lib.

4.1.1. Licence file

Beside jadice server's distribution file you get a separate licence file (JadiceServer-
License.properties). This file must be inserted in jadice server's configuration dir-
ectory (/server-config).

If this file does not exist or if the licence has expired or become invalid, an error re-
port is written in the server and client log at the start of jadice server and at each
requirement of a job.

In case of a temporarily limited evaluation licence a report will be shown only at the
server's start. Beyond this jadice server will not be restricted in its functionality.

4.1.2. Manual download for hyphenation support

jadice server uses Apache FOP for converting XML-documents and e-mails into PDF.
Due to legal licencing reasons the optional package for hyphenation is not attached
to jadice server's distribution package. However, this hyphenation package is avail-
able for free under http://offo.sourceforge.net/. For installation just copy the
file hyphenation.jar into the folder server-lib.

4.1.3. Configuration of the messaging system

Three variants are provided for the building of a messaging system:

• Embedded broker (standard)

◦ Broker working within jadice server's VM

◦ Use of Apache ActiveMQ

◦ Cluster competent by „network of brokers“

◦ Configuration see chapter 4.1.4

• Separate broker

◦ Separate broker is used on jadice server's infrastructure

◦ Use of any compatible MOM

◦ Eventually cluster competent

• Separate MOM-infrastructure

◦ Use of separate MOM-infrastructure

jadice server Page 11 of 53

D e v e l o p e r ' s G u i d e

jadice server

◦ Use of any compatible MOM

◦ Availability must be granted by infrastructure

Which of these three variants is used, is configured in the file server-config/ap-
plication/server.xml. In the entry <bean id="jms-connection-factory" …> the
connector to be used is configured as well as in the paragraph <property
name="properties" …> under jadice.server.queue-name the name of the message
queue and under jadice.server.activemq-port the port for ActiveMQ to which jadice
server is to be connected to. Due to the fact the class ActiveMQConnectionFactory
implements both QueueConnectionFactory5 and TopicConnectionFactory6, it is refer-
enced with the aliases “jms-queue-connection-factory” and “jms-topic-connection-
factory” at the appropriate place.

An example configuration how to connect to IBM Websphere MQ is listed in the file
server-config/application/example/jms.xml. The adequate configuration re-
places the entries <bean id="jms-queue-connection-factory" …> and <bean
id="jms-topic-connection-factory" …> in the file server-
config/application/server.xml.

4.1.4. Configuration of embedded message broker

Jadice server provides by default in the server instance the messaging system (i.e.
the message broker) to be used. In this case Apache ActiveMQ7 is used as mes-
saging system. It is configured in the file server-config/application/activemq-
broker.xml. In order to encode the transmission between client and server by SSL,
there are instructions under http://activemq.apache.org/ssl-transport-refer-
ence.html and http://activemq.apache.org/how-do-i-use-ssl.html how this may be
realised.

The port and the name of the message queue in use are centrally configured in the
file server-config/application/server.xml, see paragraph 4.1.3.

To avoid starting this internal broker the paragraph <bean id="broker" …> in the
file server-config/application/server.xml must be commented out.

4.1.4.1. Clustering

The following configuration change is necessary to operate jadice server via Act-
iveMQ in a cluster.

• Delete in file activemq-broker.xml the comment signs around one of
the two elements <networkConnector …>.

The cluster has got the following structure:

• On each node runs an instance of jadice server each with an embedded
broker under Apache ActiveMQ.

• The clustering is based on an ActiveMQ Network-of-Brokers8, i. e. the em-
bedded broker of each node participates equally in a shared broker.

• The brokers find each other either by Auto-Discovery9 which is realised by
Multicast or the Network-of-Brokers is defined statically.

In order to render the clustering effective the clients have to be configured corres-
pondingly. If the brokers find each other by auto-discovery, the method Multic-
ast-Discovery10 may be used for client connections. For this the group name of the
cluster built by jadice server instances has to be known. This cluster is set in file
/server-config/application/server.xml under jadice.server.activemq-group and
is named jadice-server.cluster by default.

5 javax.jms.QueueConnectionFactory
6 javax.jms.TopicConnectionFactory
7 See http://activemq.apache.org/
8 See http://activemq.apache.org/networks-of-brokers.html
9 See http://activemq.apache.org/discovery.html
10 See http://activemq.apache.org/discovery-transport-reference.html

jadice server Page 12 of 53

D e v e l o p e r ' s G u i d e

http://activemq.apache.org/

jadice server

The URL by which a client may connect in this case to a cluster is (compare code
example in chapter 5.3.1):
discovery:(multicast://default)?
 group=jadice-server.cluster&initialReconnectDelay=100

If a static Network-of-Brokers has been defined, the connecting URL has to be
defined statically, too.
failover:(<URL_Server_A>,<URL_Server_B>)
// example:
failover:(tcp://serverA:61616,tcp://serverB:61616)

4.1.5. Configuration wrapper

The server is started by a platform independent wrapper. Here JAVA VM and class
path parameters are defined.

The wrapper configuration file wrapper.conf is situated in the directory /wrap-
per.

Path to JAVA VM:
Java Application
wrapper.java.command=java

Definition of further class path elements:
Java Classpath (include wrapper.jar). Add class path
elements as needed starting from 1
wrapper.java.classpath.1=../wrapper/lib/wrappertest.jar
wrapper.java.classpath.2=../wrapper/lib/wrapper.jar
wrapper.java.classpath.3=../bin/server-console.jar
wrapper.java.classpath.4=../msoffice-lib

Example definition of a further class path element:
wrapper.java.classpath.N11=<additional element>

If your Java Virtual Machine (JVM) requires additional parameters, e.g. setting the
temporary directory for the VM, these parameters can be applied in the following
manner:12

Example definition of additional JVM parameters
wrapper.java.additional.1=-server
wrapper.java.additional.2=-Djava.io.tmpdir=C:\tmp
wrapper.java.additional.N13=<another parameter>

Definition of JAVA VM's saving properties, wrapper.java.initmemory corresponds to
parameter -Xms, wrapper.java.maxmemory corresponds to parameter -Xmx:14

Initial Java Heap Size (in MB)
#wrapper.java.initmemory=3

Maximum Java Heap Size (in MB)
wrapper.java.maxmemory=512

Apart from this it is possible to change the class path and in doing so the loaded
Java-libraries as well, in order to add e.g. own worker implementations to the jadice
server. This happens in the files /server-config/jadice-server.options and

11 The numbering must be consecutive and must not clash already existing entries.
12 If jadice server is started in multi-VM-mode, these parameters only take effect on the

central instance (compare chapter 4.1.12)
13 See foot note 11
14 See foot note 12

jadice server Page 13 of 53

D e v e l o p e r ' s G u i d e

jadice server

/server-config/jadice-server-local.options. The following entries are possible
here:

-cp
<Jar-library>

Adds a single Jar-library to jadice
server's class path.

--classpath
<Jar-library>

-ld
<directory>

All Jar-libraries provided in the given dir-
ectory are added to jadice server's
classpath in alphabetical order.--library-dir

<directory>

With that it has to be noted that a line break must be done between the option and
the parameter. The effective class path is built in the following way:

1. Entries under -cp / --classpath from jadice-server.options

2. Entries under -cp / --classpath from jadice-server-local.options

3. Entries under -ld / --library-dir from jadice-server.options

4. Entries under -ld / --library-dir from jadice-server-local.options

Additionally the following options are possible:

-xo
<configuration file>

Embeds another configuration file. This
file has to correspond to the syntax
shown here.--extra-options

<configuration file>

-dCL When starting a list of the effective class
path and of the classloader-hierarchy is
shown.

--debug-classpath

-dX Eventual exceptions and stack traces
which are thrown during the start are
displayed.

--debug-using-exceptions

4.1.6. Configuration LibreOffice

It must be referred to the directory <LibreOffice-directory>/program to enable
the server's accessing on LibreOffice's programme file. The configuration is located
in the file /server-config/jadice-server-local.options, e.g.
LibreOffice directory
-cp
C:\Program Files (x86)\LibreOffice 4.0\program\

Using MS Windows Vista, Windows 7 and Server 2008 the symbolic file paths must
not be used; instead of e.g. „C:\Programme (x86)\“ (as in the German version of
MS Windows) „C:\Program Files (x86)\“ must be indicated.

For the use of LibreOffice 4.0.x it is necessary in addition to embed <LibreOffice-
directory>/URE/java/jurt.jar in the class path. Apart from this JVM- and
LibreOffice have to be binary compatible (x86 / x64).

If the paths are not configured properly, an error will be reported when converting.

On operating systems not belonging to Windows (Linux, Unix, and similar) the pack-
age Xvfb (X window virtual framebuffer) must be installed so that a headless and
thus automated operation of LibreOffice may be performed.

4.1.7. Configuration MS Office

If jadice server is installed on Windows NT, 2000, Server 2003 or an earlier version
and if the conversion is to be performed with the MSWord- / MSExcel- /... nodes,

jadice server Page 14 of 53

D e v e l o p e r ' s G u i d e

jadice server

first the „Microsoft Visual C++ 2005 SP1 Redistributable Package (x86)“15 must be
installed.

In MS Office 2007 Service Pack 2 and newer it is possible to export PDFs natively. In
MS Office 2007 versions before Service Pack 2 the „2007 Microsoft Office Add-in:
Microsoft Save as PDF“16 must be installed to use the native PDF export.

Additionally in MS Office's Trust Center it has to be set how macros have to be dealt
with. Since during the server's operation no user queries are possible only the op-
tions „Deactivate all macros without reporting“ and „Activate all macros“ are sens-
ible (see 3). ActiveX-settings are to be dealt the same way.

4.1.8. Configuration MS Outlook

In order to avoid security instructions which forbid jadice server's accessing on MS
Outlook, the programme „Advanced Security for Outlook“17 must be installed and
configured.

Configuration:

1. Log on the server computer with the user name jadice server runs with.

2. Start a conversion job that effects the MSOutlookNode18.

3. Confirm the „Advanced Security for Outlook“-dialogue with „Allow Access“
and „Always perform (…)“

Besides the option “At programme's ending empty folder “Deleted objects”19 must
be activated and the option “Show warning before elements are finally deleted”20

must be deactivated.

4.1.9. Configuration MS Project

In order to be able to convert MS project files which have been created by previous
versions “Allow loading files with legacy or non default file formats” must be set as
permitted in MS Project Trust Center.

15 See http://www.microsoft.com/downloads/details.aspx?FamilyID=200b2fd9-ae1a-4a14-
984d-389c36f85647&displaylang=en

16 See http://www.microsoft.com/downloads/details.aspx?FamilyID=f1fc413c-6d89-4f15-
991b-63b07ba5f2e5&displaylang=en

17 See http://www.mapilab.com/de/outlook/security/
18 com.levigo.jadice.server.msoffice.MSOutlookNode
19 Find under Extras → Options → More
20 Find under Extras → Options → More → Extended Options

jadice server Page 15 of 53

D e v e l o p e r ' s G u i d e

Chart 3: Allowed settings for macros in MS Office

jadice server

4.1.10. Configuration logging

For the administration of log entries the framework log4j21 is accessed. It is con-
figured in the file /server-config/logging/log4j-appenders.xml respectively
log4j-appenders-mvm.xml in multi-VM-mode (see chapter 4.1.12). Log reports
are written on the console and saved in the file /log/jadice-server.log by default.
Further possibilities are listed as comments in the configuration file and have only to
be activated.

4.1.11. Configuration Ghostscript

In order to use the GhostscriptNode22, first the following foundations have to be
laid:

• Installation of GPL Ghostscript23, version 8.64 or newer

• Adaptation of the file /server-config/ghostscript/ghostscript.xml.
Under <bean id="ghostscript" (…)> an element with the following
contents has to be inserted:
<property name="executableName" value="<location of Ghost-
script-application file>" />
Templates already exist for the locations in which Ghostscript is installed
under Windows or Linux by default. For this just the appropriate XML-com-
ment has to be removed.

4.1.12. Configuration Multi-VM-Mode

Due to the embedding of libraries it is possible that they crash the JAVA Virtual Ma-
chine in a case of error and thus the complete jadice server.

To continue work on further jobs in this case it is possible to start jadice server on
one computer in multiple instances. At this a central instance of jadice server takes
over the supervision of all other instances which perform the actual work. If one of
these worker instances should not react any more or should have crashed, the cent-
ral instance terminates the related process and starts automatically a new instance
of the jadice server.

In order to start jadice server in this mode, in the file /server-config/applica-
tion/server.xml the part which has been commented out must be changed as fol-
lows:
<!-- <import resource="single-instance.xml"/> -->

<import resource="multi-vm-manager.xml"/>
Code example

In the file /server-config/application/multi-vm-manager.xml the worker in-
stances may be configured in the paragraph <bean id="server" …>:

The number of worker-instances to be started can be adjusted in this way:

21 See http://logging.apache.org/log4j/
22 com.levigo.jadice.server.ghostscript.GhostscriptNode
23 See http://www.ghostscript.com/

jadice server Page 16 of 53

D e v e l o p e r ' s G u i d e

Chart 4: Permission of legacy formats in MS Project 2010

http://logging.apache.org/log4j/

jadice server

• Fixed number of worker instances:
<property name="fixedVMCount" value="<n>" />

• n worker instances per processor core:
<property name="perProcessorVMCount" value="<n>" />

Beyond this it is possible to provide under <property name="instanceJVMOptions"…
> start parameters like e.g. the available memory size of the JAVA VM to be started.

4.1.13. Configuration web service interface

In order to activate the interface by which queries in XML-format may be transmit-
ted to the jadice server, the comment's paragraph <import resource="webser-
vices.xml"/> in the file server-config/application/server.xml has to be re-
moved.

In this file end points24 of the web service are published in the paragraph <bean
id="web-service-provider" …>. The given entry
<entry key=
 "http://${jadice.server.hostname}:9000/jadiceServer">
Code example
provides an end point under the computer's name on port 9000.

How to use the web service interface see chapter 6.

4.1.14. Configuration security interface

By using the security interface it can be prevented that clients without authentifica-
tion acces jadice server and without any limitation its full functional range. In order
to activate this interface you have to delete in file server-
config/application/server.xml25 the XML comment sign surrounding the ele-
ment <import resource="security.xml" />.

The file security.xml contains an exemplary configuration which first has to be ad-
apted to the desired security level. This and how the security-interface may be used
then is described in chapter 7

4.2. Client

For the client-sided use the jar files from the directory
/client-lib (for Java 1.6 and above)

have to be embedded into the class path of the application / developing environ-
ment.

4.3. Installation in the developing environment Eclipse

4.3.1. Server

– Create a new JAVA project.

– Add the following jar-files to class path:

All jar-files from directory /server-lib

File activemq-all-5.x.x.jar from directory /apache-activemq-5.x.x

Files spring-###-2.5.5.jar from directory /apache-activemq-5.x.x/lib/optional

– Copy all configuration files from directory /server-conf into source-directory
(src).

– Start class JadiceServerControl from jar-file server-core at last.

– The server is now ready for use.

24 See javax.xml.ws.Endpoint
25 If jadice server uses the Multi-VM-Mode: server-config/application/multi-vm-instance.xml

jadice server Page 17 of 53

D e v e l o p e r ' s G u i d e

jadice server

4.3.2. Client

– Create a new JAVA project.

– Add all jar-files from directory /client-lib to class path.

jadice server Page 18 of 53

D e v e l o p e r ' s G u i d e

jadice server

5. Application / Functionality
Worker are server-sided implementations which deal with certain tasks being com-
puter intensive and resource consuming. This includes e.g. the generating of large

documents, the creating of data streams for displaying / printing / page preview /
page selection. Workers are contacted by a client via corresponding nodes and
provided with data.

The super class for a node implementation is the class
com.levigo.jadice.server.Node, for a worker implementation
com.levigo.jadice.server.core.worker.NodeWorker.

A detailed description of the nodes predefined in jadice server may be taken from
the attached Javadoc documentation. How to implement own nodes and workers to
expand jadice server's functionality is described in chapter 5.4 using an example.

5.1. Job definition client-sided

On client side a job is created to which one or more node implementations with the
required data (configuration / data streams) are given. Then this job contacts the
server and sets the nodes in a queue. Due to the asynchronous communication in-
terface the client is not blocked by the server during the operation.

The nodes build a directed, acyclic graph and thus define the work flow (e.g. node 1
loads data and node 2 processes them, node 3 sends the data finally back to the cli-
ent). How this is to be implemented, is illustrated in chapter 5.3 by means of some
examples.

5.2. Job definition server-sided

Jadice server creates a work flow basing on the nodes transmitted by the job. In do-
ing so the nodes which were linked together are processed one after the other by
starting the corresponding workers. The created data are passed on to the next
worker by StreamBundle26 objects.

5.3. Application scenarios including code examples

The application scenarios and configuration possibilities for jadice server are mul-
tiple and manifold.

That is why only the most common scenarios which may serve as a starting point
for own implementations are treated here.

Mostly they are built along this pattern:

26 com.levigo.jadice.server.shared.types.StreamBundle

jadice server Page 19 of 53

D e v e l o p e r ' s G u i d e

1…n Nodes
Configuration

data

Worker
Processing of

 configuration data/
input data
creating of
output data

 Client Server

Job
Communication to

 server

jadice server

• File received from client

• Server-sided processing

• Submit result to client

But this is just a simplified displaying of the structure. In real applications results are
normally not sent back right after their processing, but they are processed in cas-
caded steps. Even the client is not stringently the source and the destination of data
streams, but this may be e.g. a central file, mail or archive server, too.

5.3.1. Create a server job

The server job is created on client side; 1...n nodes may be attached to the job.

Possible configurations of the server job:

– Timeout and similar limits27, see chapter 5.3.3

– JobListener implementation, see chapter 5.3.2

– Work flow (= acyclic graph defined by linked nodes)

Create job (in example with ActiveMQ as message broker):
public Job createServerJob() {
 // Create job factory with parameters „Server-
 // Url“ and „Queue-Name“ (compare 4.1.4)
 JMSJobFactory jobFactory = new JMSJobFactory(
 new ActiveMQConnectionFactory("tcp://<Broker_IP>
 :<Broker-Port>"), "<Queue-Name>");
 // create server job
 Job job = jobFactory.createJob();
 return job;
}
Code example

Configure and perform job:
// Create job
Job job = createServerJob();
// Set timeout(60 seconds)
job.apply(new TimeLimit(60, TimeUnit.SECONDS));
// Register JobListener (compare 5.3.2)
job.addJobListener(<JobListener-Implementation>);
// Define workflow (see below)
job.attach(<Node-Workflow>);
// Send job to server
job.submit();
Code example

5.3.2. Create a JobListener

With the JobListener28 server job states and server-sided error reports may be pro-
cessed.

Example of a JobListener implementation MyJobListener:
public class MyJobListener implements JobListener {
 public void stateChanged(Job job, State old,
 State new) {
 dump("stateChanged", job, old, new, null, null);

27 com.levigo.jadice.server.Limit
28 com.levigo.jadice.server.JobListener

jadice server Page 20 of 53

D e v e l o p e r ' s G u i d e

jadice server

 }

 public void executionFailed(Job job, Node node,
 String messageId, String reason, Throwable cause) {
 dump("executionFailed", job, node, messageId,
 reason, cause);
 }

 public void errorOccurred(Job job, Node node,
 String messageId, String message, Throwable cause) {
 dump("errorOccurred", job, node, messageId, message,
 cause);
 }

 public void warningOccurred(Job job, Node node,
 String messageId, String message, Throwable cause) {
 dump("warningOccurred", job, node, messageId,
 message, cause);
 }
 public void subPipelineCreated(Job job, Node parent,
 Set<? extends Node> createdNodes) {
 dump("subPipelineCreated", job, parent,
 null, null, null)
 }
 private void dump(String ctx, Job job, Object
 arg1, Object arg2, Object arg3, Object arg4) {
 System.err.println("Context: " + ctx);
 System.err.println("Job: " + job.toString());
 System.err.println(" " + arg1);
 System.err.println(" " + arg2);
 System.err.println(" " + arg3);
 System.err.println(" " + arg4);
 }
}
Code example

Jadice server is equipped with two implementations of this interface which may be
used in the integration:

Class name Description

TraceListener29 Transmits error report via Apache Commons Logging to the
Client-Log.

JobListenerAdapter30 Empty default implementation of JobListener-Interface.
Classes derived from that must only overrride the desired
methods.

5.3.3. Configuration of Limits

In order to limit the resource consumption of a job or its nodes it is sensible to use
limits. The following limits are possible for this:

Limit type Description

Context

Job Node

TimeLimit Maximum processing time

StreamCountLimit Maximum number of streams provided by a node

StreamSizeLimit Maximum size of streams provided by a node

29 com.levigo.jadice.server.util.TraceListener
30 com.levigo.jadice.server.JobListenerAdapter

jadice server Page 21 of 53

D e v e l o p e r ' s G u i d e

jadice server

PageCountLimit Maximum size of pages of a generated document
31

NodeCountLimit Maximum number of nodes which a job may have.
Respects also nodes which may be created dynamically by
the server.

Legend:
 is directly respected at this location
 is not respected at this location
 is not respected, but is passed to the nodes (see below)

When defining a limit it may be chosen what is to happen if it is exceeded:
TimeLimit tl = new TimeLimit(60, TimeUnit.SECONDS);
tl.setExceedAction(WhenExceedAction.ABORT); // default

NodeCountLimit ncl = new NodeCountLimit(20);
ncl.setExceedAction(WhenExceedAction.WARN);
At the action ABORT the complete job is cancelled, at the action WARN a warning is
reported to the client.

Since at the clientsided workflow definition possibly not all nodes are known or it is
not sensible to allocate each single node with limits, these may also be used on the
job. They are passed to the single nodes. At this the following precedence rules ap-
ply:

1. Limits with action WARN are passed on in any case.

2. Limits with action ABORT are not passed on to nodes on which already a
limit of the same class with the action ABORT has been applied even if this
is less restrictive.

3. If limits of the same class are set with Action ABORT both clientsided as
well as by the security interface, the more restrictive have priority. Com-
pare chapter 7.1.2

5.3.4. Identification of unknown input data

jadice server offers powerful modules for the recognition of unknown file formats.
These are used in the modules to convert unknown files respectively e-mails auto-
matically (see chapter 5.3.10 and 5.3.12).

Beyond this it is also possible to address these modules by the
StreamAnalysisNode32 and to use it for own purposes.

// Create server job (see 5.3.1)
Job job = createServerJob();
// Create nodes:
// 1. Data input node
StreamInputNode siNode = new StreamInputNode();
// 2. Analyse node
StreamAnalysisNode saNode = new StreamAnalysisNode();
// 3. Output node
StreamOutputNode soNode = new StreamOutputNode();
// Create workflow
job.attach(siNode.
 appendSuccessor(saNode).
 appendSuccessor(soNode));
// Perform job
job.submit();
// Send document data stream

31 For nodes generating documents which know a page term. Compare javadoc
32 com.levigo.jadice.server.jadice4x.StreamAnalysisNode

jadice server Page 22 of 53

D e v e l o p e r ' s G u i d e

jadice server

siNode.addStream(<InputStream>);
// Finish data input
siNode.complete();
// Await server's response33

for (Stream stream : soNode.getStreamBundle()) {
// Read meta data.
StreamDescriptor descr = stream.getDescriptor();
String mimeType = descr.getMimeType();

}
Code example

5.3.5. Extraction of document information

The JadiceDocumentInfoNode34 implementation sends a document to the server.
The server loads the document and provides document specific information35 to the
client. The format to be analyzed must be supported by the jadice document plat-
form.

The DocumentInfoListener implementation:
public class DocumentInfoListener implements
 IDocumentInfoResultListener {
 // Documentinfo created by server-sided worker.
 private IDocumentInfo documentInfo = null;
 private boolean documentInfoReceived = false;

 public void documentInfoRecieved(IDocumentInfo info) {
 // When the worker has finished, the documentinfo
 // is passed here.
 documentInfo = info;
 documentInfoReceived = true;
 }

 public void waitForDocumentInfo() {
 // Blocks until the worker is ready.
 while (!documentInfoReceived) {
 try {
 Thread.sleep(250);
 } catch (Exception e) {
 }
 }
 }

 public IDocumentInfo getDocumentInfo() {
 return documentInfo;
 }
}

Code example

Create and perform a job by using the JadiceDocumentInfoNode implementation:
// Create server job (see 5.3.1)
Job job = createServerJob();
// Create listener
DocumentInfoListener documentInfoListener =
 new DocumentInfoListener();

33 The method getStreamBundle() blocks till the server has finished processing. An asyn-
chronous processing is to be realised by using a JobListener implementation (compare
chapter 5.3.2).

34 com.levigo.jadice.server.jadice4x.JadiceDocumentInfoNode
35 com.levigo.jadice.server.jadice4x.IDocumentInfo

jadice server Page 23 of 53

D e v e l o p e r ' s G u i d e

jadice server

// Create InfoNode, add listener
JadiceDocumentInfoNode infoNode =
 new JadiceDocumentInfoNode();
infoNode.addInfoResultListener(documentInfoListener);
// Create InputNode is the 1st node in the work flow
StreamInputNode siNode = new StreamInputNode();
// Add Infonode as successor.
// On server-side first the InputNode for the
// document's loading is processed, then the InfoNode
// which analyses the loaded document is performed.
siNode.appendSuccessor(infoNode);
// 1. Pass node to job...
job.attach(siNode);
// ...and start job
job.submit();
// Only after the job's starting the data stream may be
// passed to the Inputnode.
siNode.addStream(new FileInputstream("<Filename>"));
// Finish data input
siNode.complete();
// Wait for processing by server (see above)
documentInfoListener.waitForDocumentInfo();
// Get documentInfo and release data
IDocumentInfo documentInfo =
 documentInfoListener.getDocumentInfo();
System.out.println("Format : " +
 documentInfo.getFormat(0));
System.out.println("Number of pages : " +
 documentInfo.getPageCount());
System.out.println("Size (Pixel) : " +
 documentInfo.getSize(0).width + "x" +
 documentInfo.getSize(0).height);
System.out.println("Resolution (dpi): " +
 documentInfo.getResolution(0));

Code example

5.3.6. Merging of multiple PDF documents

With the PDFMergeNode36 it is possible to merge multiple PDF documents to a
single one.
Job job = createServerJob(); // (see 5.3.1)
// Create nodes:
// 1. Data input node
StreamInputNode siNode = new StreamInputNode();
// 2. Merging of input data (1…n to 1)
PDFMergeNode pmNode = new PDFMergeNode();
// 3. Output node
StreamOutputNode soNode = new StreamOutputNode();
// Create workflow
job.attach(siNode.
 appendSuccessor(pmNode)
 .appendSuccessor(soNode));
//Perform job
job.submit();
// Send PDF-document-data-stream
siNode.addStream(<InputStream_PDF_1>);
siNode.addStream(<InputStream_PDF_2>);
(…) // further data streams

36 com.levigo.jadice.server.pdfmerge.PDFMergeNode

jadice server Page 24 of 53

D e v e l o p e r ' s G u i d e

jadice server

// Finish data input
siNode.complete();
// Await server's response
for (Stream stream : soNode.getStreamBundle()) {
 // Read data.
 InputStream is = stream.getInputStream();
}
Code example

5.3.7. Converting to TIFF

Most of the converting processes (e.g. LibreOffice, Shaper) create PDF. However, it
is possible to keep on converting the result to TIFF by inserting the JadiceShaper-
Node37.

In the following example the work flow from chapter 5.3.6 is changed; instead of
the PDFMergeNode a conversion to TIFF with an added aggregation is attached:
(…)
JadiceShaperNode shaperNode = new JadiceShaperNode();
// desired target format
shaperNode.setTargetMimeType(„image/tiff“);
// merge all incoming streams
shaperNode.setOutputMode(OutputMode.JOINED);
// create workflow, insert Tiff-Converter-Node
job.attach(siNode.
 appendSuccessor(shaperNode).
 appendSuccessor(soNode));
(…)
Code example

5.3.8. Permanent anchoring of annotations

In order to display documents and their annotations with standard programmes
they have to be anchored as “normal” objects in the source format.

This may also be realised by using the JadiceShaperNode. The necessary association
between the document data stream and the annotation data streamings is shown in
the following example:

// example interface for bundling of document and
annotations
interface DocumentAndAnnotations {
 InputStream getContent();
 List<InputStream> getAnnotations();
}

public void convert(doc DocumentAndAnnotations) {
 Job job = createServerJob(); // (see 5.3.1)

 // Create nodes
 StreamInputNode inputNode = new StreamInputNode();
 JadiceShaperNode shaperNode = new JadiceShaperNode();
 StreamOutputNode outputNode = new StreamOutputNode();

 // Configuration of resulting type (e.g. PDF)
 shaperNode.setTargetMimeType("application/pdf");

 // Associate annotation streams with content
 shaperNode.setOutputMode(
 OutputMode.ASSOCIATED_STREAM);

37 com.levigo.jadice.server.jadice4x.JadiceShaperNode

jadice server Page 25 of 53

D e v e l o p e r ' s G u i d e

jadice server

 // Configure the workflow
 job.attach(inputNode
 .appendSuccessor(shaperNode)
 .appendSuccessor(outputNode));
 job.submit();

 // Sending document content
 // (here with an explicit MIME type)
 final StreamDescriptor contentSD
 = new StreamDescriptor("application/pdf");
 inputNode.addStream(doc.getContent(), contentSD);

 // Processing of annotations:
 for (InputStream annoStream : doc.getAnnotations()) {
 StreamDescriptor annoSD = new StreamDescriptor();
 // Association between document and annotation:
 annoSD.setParent(contentSD);
 // Setting of annotation type (e.g. Filenet P8):
 annoSD.setMimeType(JadiceShaperNode
 .AnnotationMimeTypes.FILENET_P8);
 // Sending of annotation data stream
 inputNode.addStream(annoStream, annoSD);
 }
 inputNode.complete();
 // Processing of result (see 5.3.6)
}
Code example

In this configuration there are two settings of particular relevance:

Document and annotation data streamings have to be linked with each other by the
StreamDescriptor hierarchy. For this the document's StreamDescriptor must be set
as the parent of the annotations' StreamDescriptors.

For the provided MIME types of annotations there are predefined constants in the
class JadiceShaperNode which must be set stringently. Further information about
annotation formats and their properties you may get from the annotation manual of
the jadice document platform38.

Please note that the document's content is not being analysed. Contents covered by
annotations may depending on the data format still be available in the target data
stream.

5.3.9. Unpacking of archive files

To reduce the network load files are often compressed. Before the processing they
may be unpacked by jadice server. This happens depending on the file format in dif-
ferent node classes:

File
format

Node class Comment

ZIP com.levigo.jadice.server.archive.UnZIPNode

RAR com.levigo.jadice.server.archive.UnRARNode

GZIP com.levigo.jadice.server.archive.UnGZIPNode .tar.gz-files have to pass
the GZIP-Node first, then
the TAR-Node.TAR com.levigo.jadice.server.archive.UnTARNode

How this looks like for the UnZIPNode, is shown in the following code example:
Job job = createServerJob(); // (see 5.3.1)
// Create nodes:

38 http://support.levigo.de/products/jadice/documentplatform/4.3/documentation/annotation
-manual.html

jadice server Page 26 of 53

D e v e l o p e r ' s G u i d e

jadice server

// 1. Data input node
StreamInputNode siNode = new StreamInputNode();
// 2. Unpacking of ZIP-archives
UnZIPNode unzipNode = new UnZIPNode();
// 3. Output node
StreamOutputNode soNode = new StreamOutputNode();
// Create work flow
job.attach(siNode.
 appendSuccessor(unzipNode).
 appendSuccessor(soNode));
// Perform job
job.submit();
// Send document data stream
siNode.addStream(<zipped_Inputstream>);
// Finish data input
siNode.complete();
// Await server's response
for (Stream stream : soNode.getStreamBundle()) {
 // Read data(1 stream per file in archive)
 InputStream is = stream.getInputStream();
}
Code example

5.3.10. Converting unknown input data in a unified format (PDF)

A unification of documents is particularly in the domain of long time archiving of
use. The access on the data source, the automatic data analysis, a target-oriented,
dynamic processing and a final archiving in the archive bring the following advant-
ages:

The calling application does not need any knowledge about source files and
formats. There is no danger by malign data or documents. Consequently the net-
work transfer is minimised. Due to its structure jadice server makes it possible to
control at any time the converting result in a flexible way.
Job job = createServerJob(); // (see 5.3.1)
// Create nodes:
// 1. Data input node
StreamInputNode siNode = new StreamInputNode();
// 2. Analysis node
DynamicPipelineNode dpNode = new DynamicPipelineNode();
dpNode.setRulesetName("default");
// 3. Merging of input data (1…n to 1)
PDFMergeNode pmNode = new PDFMergeNode();
// 4. Output node
StreamOutputNode soNode = new StreamOutputNode();
// Create work flow by nodes' linking
job.attach(siNode.
 appendSuccessor(dpNode).
 appendSuccessor(pmNode).
 appendSuccessor(soNode));
// Perform job
job.submit();
// Send document-data stream
siNode.addStream(<InputStream>);
// Finish data input
siNode.complete();
// Await server's response
for (Stream stream : soNode.getStreamBundle()) {
 // Read data
 InputStream is = stream.getInputStream());
}
Code example

jadice server Page 27 of 53

D e v e l o p e r ' s G u i d e

jadice server

You can finde the ruleset used in the folder /server-config/dynamic-pipeline-
rules. In this folder you can also find an XML Schema which helps to costumize
these XML base ruleset for own need.

5.3.11. Converting Office-documents to PDF

Job job = createServerJob(); // (see 5.3.1)
// Create nodes:
// 1. Data input node
StreamInputNode siNode = new StreamInputNode();
// 2. LibreOffice-conversion node39

LibreOfficeConversionNode loNode =
 new LibreOfficeConversionNode();
// 3. Merging of input data(1…n to 1)
PDFMergeNode pmNode = new PDFMergeNode();
// 4. Output node
StreamOutputNode soNode = new StreamOutputNode();
// Create work flow
job.attach(siNode.
 appendSuccessor(loNode).
 appendSuccessor(pmNode).
 appendSuccessor(soNode));
// Perform job
job.submit();
// Send document data stream
siNode.addStream(is);
// Finish data input
siNode.complete();
// Await server's response
for (Stream stream : soNode.getStreamBundle()) {
 // Read data
 InputStream is = stream.getInputStream());
}
Code example

Note: Documents in Word2007 format (file extension .docx) must pass the
StreamAnalysisNode before being converted by LibreOffice (compare chapter 5.3.4).

5.3.12. Converting e-mails to PDF

When converting e-mails the e-mail is taken directly from the mail server. For this
the corresponding access data have to be indicated.

This process is similar to the dynamic conversion (see chapter 5.3.10). The e-mail is
analysed, possible attachments like e.g. Office documents, pictures etc. are all con-
verted, merged in a review and attached to the e-mail text.

Archive files are unpacked and their content is embedded in the converting process.
Job job = createServerJob(); // (see 5.3.1)
// Create nodes:
// 1. Input node, here from server-side a mail
//server is addressed.
JavamailInputNode jiNode = new JavamailInputNode();
// Set mail server specific data
jiNode.setStoreProtocol(<Protocol>); // POP3 or IMAP
jiNode.setHostName(<Server>);
jiNode.setUsername(<User>);
jiNode.setPassword(<Password>);
jiNode.setFolderName(<E-Mail folder>);
jiNode.setImapMessageUID(<E-Mail ID>);

39 The class path has to be set as described in chapter 4.1.6.

jadice server Page 28 of 53

D e v e l o p e r ' s G u i d e

jadice server

// 2. Analysis node with script for e-mail-conversion
ScriptNode scNode = new ScriptNode();
scNode.setScript(new URI("resource:
 email-conversion/EmailConversion.groovy")));
// 3. Merging of input data(1…n to 1) PDFMergeNode
pmNode = new PDFMergeNode();
// 4. Output node
StreamOutputNode soNode = new StreamOutputNode();
// Create work flow
job.attach(jiNode.
 appendSuccessor(scNode).
 appendSuccessor(pmNode).
 appendSuccessor(soNode));
// Perform job
job.submit();
// Await server's response
for (Stream stream : soNode.getStreamBundle()) {
 // Read data
 InputStream is = stream.getInputStream();
}
Code example

If e-mails are not to be requested by the JavamailInputNode via a IMAP or POP3 ac-
count, but e.g. read as eml-file, additionally a MessageRFC822Node40 which separ-
ates the e-mail header and the body has to be interposed:
Job job = createServerJob(); // (see 5.3.1)
// Create nodes:
// 1. Input node, here as file from client.
StreamInputNode siNode = new StreamInputNode();
// 2. Separation of e-mail-header and -body
MessageRFC822Node msgNode = new MessageRFC822Node();
// 3. Analysis node with script for e-mail-conversion
ScriptNode scNode = new ScriptNode();
scNode.setScript(new URI("resource:
 email-conversion/EmailConversion.groovy")));
// Rest see above
Code example

E-mails which are available in MS Outlook format (msg-files) may be converted by
TNEFNode41 without starting MS Outlook into a format supported by jadice server
and by using this configuration:
Job job = createServerJob(); // (see 5.3.1)
// Create nodes:
// 1. Input node, here as file from client.
StreamInputNode siNode = new StreamInputNode();
// 2. Pre-conversion of MSG files
TNEFNode tnefNode = new TNEFNode();
tnefNode.setInputFormat(InputFormat.MSG)
// 3. Analysis node with script for e-mail-conversion
ScriptNode scNode = new ScriptNode();
scNode.setScript(new URI("resource:
 email-conversion/EmailConversion.groovy")));
// Rest see above
Code example

Please note that the mail body in msg-files is available as rich text (rtf) and thus in
the standard configuration it is converted to PDF by LibreOffice.

40 com.levigo.jadice.server.javamail.MessageRFC822Node
41 com.levigo.jadice.server.javamail.TNEFNode

jadice server Page 29 of 53

D e v e l o p e r ' s G u i d e

jadice server

In the configuration shown above a separator which contains meta data of the cor-
responding attachment is generated by default for each file attachment. If no separ-
ators are desired, they may be deactivated for all file attachments with the following
configuration of the ScriptNode:
(…)
scNode.getParameters().put
 ("showAttachmentSeparators", false));
(…)
Code example

Another configuration possibility regards formatted e-mails. If these were sent both
in HTML and plain-text format, the HTML part is converted by default. If the plain-
text part is to be converted instead, the following configuration of the ScriptNode
has to be done:
(…)
scNode.getParameters().put
 ("preferPlainTextBody", true));
(…)
Code example

Besides this it is possible to attach this part which is normally not converted as an
additional attachment to the e-mail. Thus the formatted e-mail may be displayed
both in the HTML and in the plain-text format. The required configuration is:
(…)
scNode.getParameters().put
 ("showAllAlternativeBody", true));
(…)
Code example

In order to avoid that jadice server downloads images and other files referenced in
e-mails from unknown sources, this may be done by the following setting:
(…)
scNode.getParameters().put
 ("allowExternalHTTPResolution", false));
(…)
Code example

How to handle attachments with a format that has not been recognised or that is
not configured to be converted by the jadice server may be controlled by the para-
meter unhandledAttachmentAction:
(…)
scNode.getParameters().put
 ("unhandledAttachmentAction", "failure"));
(…)
Code example

The following values are accepted herewith:
Value Significance

warning A warning is written into the log.

error An error is written into the log (default value).

failure The corresponding job breaks off with a failure.

Image files which are referenced in an e-mail but have not been converted are re-
placed by the following place holders for identification:

Value Meaning

The image has not been loaded due to the setting
„allowExternalHTTPResolution“ (see above).

The image file could not be loaded.

jadice server Page 30 of 53

D e v e l o p e r ' s G u i d e

jadice server

5.3.13. Controlling of external programmes

The controlling of external programmes is very easily possible by using the
ExternalProcessCallNode42. Jadice server takes automatically care that incoming and
outgoing data streams are automatically converted to temporary files and that these
files are deleted after having been prcessedby the external programme.

The only condition is that the programme on the server may be accessed by com-
mand line:
Job job = createServerJob(); // (see 5.3.1)
// Create nodes:
// 1. Data input node
StreamInputNode siNode = new StreamInputNode();
// 2. External process
ExternalProcessCallNode epcNode =
 new ExternalProcessCallNode();
// Configuration:
// Programme name (backslashes must be escaped)
epcNode.setProgramName(
 "C:\\Programme\\MyConverter\\MyConverter.exe");
// Command line parameters
// ${infile} and ${outfile} substituted by jadice
server
epcNode.setArguments(
 "-s -a ${infile} /convert=${outfile}");
// file extensions, if required by programme
epcNode.setInfileExtension(".foo");
epcNode.setOutfileExtension(".pdf");

// 3. Output node
StreamOutputNode soNode = new StreamOutputNode();
// create work flow
job.attach(siNode.
 appendSuccessor(epcNode).
 appendSuccessor(soNode));
job.submit();
// Await server's response
for (Stream stream : soNode.getStreamBundle()) {
 // Read data
 InputStream is = stream.getInputStream();
}
Code example

5.4. Implementation of own nodes / workers

In this chapter it will be shown by using a simple example how jadice server may be
extended with own nodes and workers in order to realise new processing steps.

For this mainly two steps are necessary: First a node class which exists both on cli-
ent and server side has to be implemented (see chapter 5.4.1). Then the corres-
ponding worker class has to be implemented (see chapter 5.4.2). This worker class
needs to be available only on server side.

5.4.1. Node class

The node class to be newly created must inherit of the abstract super class Node43.
It must own a parameterless constructor („default constructor“).

42 com.levigo.jadice.server.external.ExternalProcessCallNode
43 com.levigo.jadice.server.Node

jadice server Page 31 of 53

D e v e l o p e r ' s G u i d e

jadice server

Apart from this the method getWorkerClassName() may be overwritten. As the de-
fault return value this method provides as return value the fully qualified class name
of the node, in which “node” is replaced by “worker” as well as “worker” is inserted
as an additional name space layer (example: com.acme.jadiceserver.ExampleNode.-
getWorkerClassName() provides „com.acme.jadiceserver.worker.ExampleWorker“).

If you have chosen a different package structure, this method may be overwritten in
order to provide the fully qualified class name of the corresponding worker class:
package com.mycompany.jadice.client;
import com.levigo.jadice.server.Node;

public class DemoNode extends Node {
 public String getWorkerClassName() {
 // Class name of worker class from example below
 // default return value would be
 // "com.mycompany.jadice.client.worker.DemoWorker"
 return "com.mycompany.jadice.worker.DemoWorker";
 }
}
Code example: Implementation of a node

If it should be possible to transmit parameters to the worker during the runtime,
this may be done by further methods in the node implementation. At this you have
to bear in mind that all object and static attributes have to implement the interface
Serializable44 since they are serialized and transported by JMS (see chapter 4.1.4)
 public String getMyParameter() {
 // Should be set by e.g. setter-method
 return "a Parameter";
 }
Code example: Node from example above extended with a parameter

The node implemented by oneself has to be embedded in the class path both on cli-
ent and server side and may be exactly like the nodes shown in chapter 5.3 embed-
ded in own work flows.

5.4.2. Worker class

The worker class in which the converting is performed inherits of the abstract gen-
eric super class NodeWorker<N>45 whereat the type parameter <N> stands for the
corresponding node class.

Here the abstract method work() is to be implemented in which the server-sided
conversion is performed.
package com.mycompany.jadice.server;

// Here are the most important imports
import com.levigo.jadice.server.core.NodeWorker;
import com.mycompany.jadice.client.DemoNode;

public class DemoWorker extends NodeWorker<DemoNode> {

 protected void work() throws Throwable {
 // Parameter defined in example above
 String myParam = getNode().getMyParameter();

 // Retrieve input data
 for (Stream stream : getInputBundle()) {
 InputStream unprocessedIS =
 stream.getInputStream();
 // Meta data of received data stream

44 java.io.Serializable
45 com.levigo.jadice.server.core.NodeWorker<N>

jadice server Page 32 of 53

D e v e l o p e r ' s G u i d e

jadice server

 StreamDescriptor unprocessedSD =
 stream.getDescriptor();

 // Method which processes data stream
 // (not shown in listing)
 InputStream processedIS =
 process(unprocessedIS, myParam);

 // Meta data of processing data stream
 // unprocessedSD is set as „Parent“
 StreamDescriptor processedSD =
 new StreamDescriptor(unprocessedSD);
 processedSD.setDescription("<Description>");
 processedSD.setMimeType("<MIME Type>");
 processedSD.setFileName("<File name>");

 // Combining of result and meta data
 Stream result =
 new BundledStream(processedIS, processedSD);
 // Pass results
 getOutputBundle().addStream(result);
 }
}
Code example: Implementation of a worker

The worker implemented this way must be embedded only in the class path of
jadice server and is automatically recalled from the previous chapter when using the
corresponding nodes.

jadice server Page 33 of 53

D e v e l o p e r ' s G u i d e

jadice server

6. Web service Interface
In order to offer jadice server's full functionality to clients independently of their im-
plementation language a web service interface has been introduced in version
4.2.0.0.

The communication with jadice server – respectively with the web service front end
– takes place by HTTP protocol via SOAP report in the XML-format. The transmis-
sion of files which are to be converted or sent back to the client as a result is real-
ised as a MTOM-Attachment46.

For developing and debugging of SOAP queries we recommend soapUI47.

6.1. Structure of a SOAP-message

After the web service interface has been activated as described in chapter 4.1.13,
the interface's formal description may be downloaded in the WSDL format48 under
http://<url>?wsdl (e. g. with a configuration like in the chapter above: http://local-
host:9000/jadiceServer?wsdl). Thus code may be generated in many web service
frameworks in order to address jadice server's web service. Within a SOAP request
jadice server may be addressed in two different ways

• The workflow is preconfigured by means of a template which has been
saved on server side before.

• The workflow is defined during runtime within the SOAP request.

The two possibilities are explained in the two following chapters.

6.1.1. Request by means of a template

It is possible to store a XML-coded job description on server side in such a way that
a client may refer to it during a SOAP request and the job does not have to be con-
figured during the runtime.

This request's structure is to be explained by using the following example:
<soapenv:Envelope xmlns:soapenv=

"http://schemas.xmlsoap.org/soap/envelope/"
xmlns:ws="http://ws.server.jadice.levigo.com/">

 <soapenv:Header/>
 <soapenv:Body>
 <ws:run>

46 See http://www.w3.org/TR/soap12-mtom/
47 See http://www.soapui.org/
48 See http://www.w3.org/TR/wsdl20-primer/

jadice server Page 34 of 53

D e v e l o p e r ' s G u i d e

Chart 5: Schematic structure of the web service interface

jadice server

 <job templateLocation=
 "resource:/jobtemplates/x2pdf.xml">
 <property name="dp.rulesetName">default</property>
 <property name="dp.targetMimeType">
 application/pdf</property>
 <property name="dp.timeout">8000</property>
 <stream mimeType="unknown/*" uuid="123456789"
 nodeId="node0">
 <documentData>BASE64_encoded_data</documentData>
 </stream>
 </job>
 </ws:run>
 </soapenv:Body>
</soapenv:Envelope>
Code example of a SOAP-request with job template

Beside the elements for header and body determined by the SOAP standard there is
the specific element <run> which addresses the method run offered by the web
service.

Therein a job (see chapter 3) is defined which is predefined by a template (see
chapter 6.3). In the attribute templateLocation the location is given where the
respective template is found on server side. If variables are defined in the template,
they may be configured by property elements respectively their default value may
be overwritten. The attribute messageID is optional. It may be freely allocated by
the client and eventually it is assumed in the server's response.

Data streams to be processed are referred to in the SOAP request by stream ele-
ments. Informations about a unique ID (uuid) and the MIME type are optional. If
the MIME type is not known, but should be indicated, you have to indicate there
„unknown/*“.

If multiple StreamInputNodes49 are defined in the template file, it has to be dis-
tinctly allocated which data stream is sent to which StreamInputNode. This is per-
formed by the attribute nodeId. It refers to the ID given to the StreamInputNode
within the template (attribute id).

The actual data follow either directly in the tag documentData as base64-encoded
String or in a multipart/related container which owns the CID indicated here (con-
tent ID) if the MTOM feature is enabled.

6.1.2. Job definition within the SOAP request

If the client is not to use a job configuration predefined on server-side, it is possible
to embed it in the SOAP request. The format is the same like within a separate job-
template (compare chapter 6.3). Instead of the root element job the definition is
embedded in the SOAP request as configuration element.

This is explained in the following example:
<soapenv:Envelope xmlns:soapenv=

"http://schemas.xmlsoap.org/soap/envelope/"
xmlns:ws="http://ws.server.jadice.levigo.com/">

 <soapenv:Header/>
 <soapenv:Body>
 <ws:run>
 <job messageID="4711">
 <configuration>
 <nodes>
 <node class=
 "com.levigo.jadice.server.nodes.StreamInputNode"
 id="input1" />
 <node class=
 "com.levigo.jadice.server.nodes.StreamInputNode"
 id="input2" />

49 com.levigo.jadice.server.nodes.StreamInputNode

jadice server Page 35 of 53

D e v e l o p e r ' s G u i d e

jadice server

 <node class=
 "com.levigo.jadice.server.nodes.DemultiplexerNode"
 id="demux" />
 <node class=
 "com.levigo.jadice.server.nodes.StreamOutputNode"
 id="out" />
 </nodes>
 <connections>
 <connect from="input1" to="demux" />
 <connect from="input2" to="demux" />
 <connect from="demux" to="out" />
 </connections>
 </configuration>
 <stream nodeId="input1">
 <documentData>BASE64_encoded_data</documentData>
 </stream>
 <stream nodeId="input2">
 <documentData>BASE64_encoded_data</documentData>
 </stream>
 </job>
 </ws:run>
</soapenv:Body>
</soapenv:Envelope>
Code example of a SOAP request with embedded job definition

In this example two StreamInputNodes are connected by a DemultiplexerNode50

and the input data are returned unchanged to the client.

The nodes' definition and which work flow graph they build is described within the
configuration block.

Beyond this you can see here how it is possible to bind certain input streams to a
StreamInputNode: The first document is bound to the first StreamInputNode
(nodeId input1), the second document is bound to the second StreamInputNode
(nodeId input2).

6.2. Structure of a SOAP response

The structure of a response which is sent to a client in answering a request is also
specified in the WSDL mentioned above.

A possible response may look like this:
<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Body>
 <ns2:runResponse xmlns:ns2=
 "http://ws.server.jadice.levigo.com/">
 <return>
 <stream>
 <documentData>BASE64_encoded_data</documentData>
 </stream>
 <status>COMPLETED</status>
 </return>
 </ns2:runResponse>
 </soap:Body>
</soap:Envelope>
Code example of a SOAP response

Beside a (eventually empty) set of result streams which are each referenced by a
unique ID in a multipart/related container there is a status report. The following val-
ues are possible:

50 com.levigo.jadice.server.nodes.DemultiplexerNode

jadice server Page 36 of 53

D e v e l o p e r ' s G u i d e

jadice server

Value Significance

COMPLETED Job has been performed.

FAILED Job could not be performed.

In both cases the return element may contain a set of log-entry-elements which
contain indications about the process failure or log messages which have occurred
during the processing (compare chapter 5.3.2 „Create a JobListener“). The following
example shows the error report displayed when a non-existing job-template file is
referenced:
<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Body>
 <ns2:runResponse xmlns:ns2=
 "http://ws.server.jadice.levigo.com/">
 <return messageID="12345">
 <log-entry timeStamp="31.12.2009 22:33:44">
 <level>ERROR</level>
 <id>JS.WEBSERVICE-EXCEPTION</id>
 <message>java.io.FileNotFoundException: Could not
 locate resource: does_not_exist.xml</message>
 </log-entry>
 <status>FAILED</status>
 </return>
 </ns2:runResponse>
 </soap:Body>
</soap:Envelope>
Code example of an error report

6.3. Definition of job-templates

Due to the definition of job-templates it has been made possible that clients do not
have to know any longer jadice server's internal steps which are necessary for a
conversion. These are provided for the web service interface on a central location.
Thus the client has to know only the web service method „run“ and the location of
the template to be performed (which are normally in the sub-folder server-config/).

The XSD definition for these templates is provided in the folder server-config/job-
templates.

An example how such a template may look like is provided in the distributed tem-
plate x2pdf.xml which similar to the example from chapter 5.3.10 identifies un-
known input data and converts them into PDF format:
<job
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="jobtemplate.xsd">
 <properties>
 <property name="PROPERTY_KEY_COMMUNICATION_TIMEOUT">
 ${communication_timeout:22000}
 </property>
 </properties>
 <nodes>
 <node class="com.levigo.jadice.server.
 nodes.StreamInputNode" id="node0">
 <property name="timeout">${timeout:6000}</property>
 </node>
 <node class="com.levigo.jadice.server.
 nodes.DynamicPipelineNode" id="node1">
 <property name="rulesetName">
 ${rulesetName:default}</property>
 <property name="targetMimeType">

jadice server Page 37 of 53

D e v e l o p e r ' s G u i d e

jadice server

 ${targetMimeType:application/pdf}</property>
 <property name="timeout">${timeout:6000}</property>
 </node>
 <node class="com.levigo.jadice.server.
 nodes.StreamOutputNode" id="node2">
 <property name="timeout">${timeout:6000}</property>
 </node>
 </nodes>
 <connections>
 <connect from="node0" to="node1" />
 <connect from="node1" to="node2" />
 </connections>
</job>
Code example of a job-template

As you can see templates are structured in three blocks:

• Properties concerning the whole job (timeout, etc.)

• Definition of single nodes (element <node>) and their properties

• Linking of nodes to a work flow

Since the single nodes correspond to the conventions for Java Beans the respective
properties may be simply set over their names. Apart from this it is possible to make
them variable as shown in the example above. This happens according to the fol-
lowing pattern:

${<identifier>} or ${<identifier>:<default value>}

whereas the identifier has to start obligatorily with a letter and as further glyphs it
may have letters, numbers, “_” (underscore), “-” (hyphen) and “.” (dot).

Due to this identifier these values may be set respectively overwritten as property
(Element <property name=“identifier“>value</...>) when calling SOAP. If
variables without a default value are not set, this results in the following failure
when calling:

„com.thoughtworks.xstream.converters.ConversionException: Pattern
refers to undefined variable <identifier> for which there is no default“

The single node elements have to stick to an ID which is unique for the respective
template. This ID links the node elements in the <connections> block to a work
flow.

If data are to be transmitted from the client to the server by the SOAP call belong -
ing to this template, it is necessary to define at least one StreamInputNode. If mul-
tiple StreamInputNodes are defined, so the single stream elements in the SOAP call
have to reference the corresponding node by the attribute nodeId. This does not
apply if there is exactly one StreamInputNode.

Data streams resulting from StreamOutputNodes as returned as MTOM attachments
in the SOAP response to the client. Here it is also possible to define multiple
StreamOutputNodes. At this the order in which the StreamOutputNodes are reques-
ted to attach their data streams to the SOAP response is arbitrary.

To embed job-templates in a SOAP-request (see chapter 6.1.2) the root-element job
must be removed; the content is instead attached to the element configuration in
the SOAP request.

6.4. Generation of web service clients

Since the web service interface is clearly defined by the WSDL, web service libraries
which are freely available may process this definition and generate proxy-classes
that encapsulate the required SOAP requests and thus enable an efficient develop-
ment of client applications. In this chapter this is shown with the help of Sun's ref-
erence implementation of JAX-WS and the library Apache Axis2.

jadice server Page 38 of 53

D e v e l o p e r ' s G u i d e

jadice server

6.4.1. JAX-WS reference implementation

In the distribution of the Java Development Kit (JDK) version 1.6 there is the com-
mand line tool wsimport which may be used for generating proxy-classes. If jadice
server's web service has been activated as described in chapter 4.1.13, the required
client classes are created with the following call:
<jdk1.6.0>\bin\wsimport
 -keep
 http://localhost:9000/jadiceServer?wsdl

The switch “-keep” causes that not only that the classes but also their source texts
are saved. For a further development it is recommended to proceed with them.
Chart 6 shows the generated classes which may be embedded in the developing en-
vironment.

Starting points for a client application are the classes JadiceServerJobInvoker
and JobInvocationService by which the SOAP interface is accessed and the class
JobConfiguration by which the call is configured. A minimal implementation may
look like this:
// Abstraction of SOAP interface:
JadiceServerJobInvoker invoker =
 new JadiceServerJobInvoker();
JobInvocationService service =
 invoker.getJobInvocationServiceImplPort();

// Job configuration
JobConfiguration job = new JobConfiguration();
job.setTemplateLocation(
 "resource:/jobtemplates/x2pdf.xml");

// Optional: Set a property (e.g. timeout)
Property timeout = new Property();
timeout.setName("timeout");
timeout.setValue("20000");
job.getProperty().add(timeout);

// Attach input data
// (only if template possesses a StreamInputNode)
Stream inputStream = new Stream();
inputStream.setDocumentData(…); // Byte-Array
job.getStream().add(inputStream);

// Offset SOAP request (method blocks)
JobResult result = service.run(job);

jadice server Page 39 of 53

D e v e l o p e r ' s G u i d e

Chart 6: Classes generated by JAX-WS

jadice server

// request result-status
ResultStatus status = result.getStatus();

for (Log log : result.getLogEntry()) {
 // Evaluate log input …
}

for (Stream stream : result.getStream()) {
 // Result as Byte-Array
 byte[] data = stream.getDocumentData();
}
Code example: Implementation of SOAP-client with JAX-WS reference implementation

6.4.2. Apache Axis2

Apache Axis2 is available under http://ws.apache.org/axis2/ and is under
Apache Licence. If jadice server's web service has been activated as described in
chapter 4.1.13, the required client classes are created with the following call:
<AXIS2_HOME>\bin\wsdl2java
 -o generatedCode
 -p com.levigo.jadice.server.ws.client.axis2.stub
 -d jaxbri
 -uri http://localhost:9000/jadiceServer?wsdl

Using the switch “-o” for the output directory and “-p” for the package name to be
used are optional. Switch “-d” determines which data binding is to be used for the
conversion to / from XML. The Apache Axis Data Binding (ADB) is used by default.
However, in the current version it has got problems with the deserialisation of
SOAP/MTOM attachments, so that the JAX-B reference implementation (jaxbri)
should be used instead.

Starting points for a client application are the classes JadiceServerJobInvoker-
Stub and Run by which the SOAP interface is accessed and the class JobConfig-
uration by which the call is configured. A minimal implementation may look like
this:
// Abstraction of SOAP interface
JadiceServerJobInvokerStub invoker =
 new JadiceServerJobInvokerStub();
Run run = new Run();

// Configuration of request
run.setJob(…); // Typ JobConfiguration (see above)

// Offset SOAP request (method blocks)
RunResponse response = invoker.run(run);

// Fetch result object
JobResult jobResult = response.getReturn();

// Processing of result compare above
Code example: Implementation of a SOAP client with Apache Axis2

jadice server Page 40 of 53

D e v e l o p e r ' s G u i d e

jadice server

7. Security-Interface
Using the security-interface it is possible to allocate a static configuration in jadice
server by which the client access may be restricted according to its role. The follow-
ing restrictions are possible depending on the permitted role:

• Forbid the complete access on nodes

• Forbid access on nodes depending on the set values

• Force job limits

• Force node limits (optionally in dependence to set values)

The adaptations necessary for this are described in the following subchapters.

7.1. Configuration

The configuration takes place in file server-config/application/security.xml
which first has to be activated in file server.xml.

7.1.1. Authentication

For authentication and permitting of roles it is relied on the framework Spring Se-
curity51. The following chart is showing how jadice server and Spring Security inter-
act:

In order to verify the authentication jadice server accesses on the
ProviderManager52 when creating workers. This ProviderManager requests the indic-
ated AuthentificationProviders53, if they accept the credentials provided by the cli-
ent. In the exemplary configuration these credentials are on the one hand the
DaoAuthenticationProvider which contains hard coded accounts in the XML-config-
uration. Apart from this an AnonymousAuthenticationProvider is preconfigured
which allows clients accessing jadice server without credentials the role „ROLE_AN-
ONYMOUS“.

At this point further AuthentificationProvider may be configured which e.g. under-
take an authentication against a LDAP-database. You can find a detailed description
in Spring Security's documentation. There you can also find further jar-files for
download which may be necessary for this. These files can be copied in the folder
<jadice-server>/server-lib.

51 http://static.springsource.org/spring-security/site/index.html
52 org.springframework.security.authentication.ProviderManager
53 org.springframework.security.authentication.AuthenticationProvider

jadice server Page 41 of 53

D e v e l o p e r ' s G u i d e

Chart 7: Relation between jadice server and Spring Security

Secured
NodeWorker

Factory

Instantiates
worker as
described

in the
job definition

AuthenticationProvider
authentication

Manager providers *

DaoAuthenticationProviderAnonymous
AuthenticationProvider

ConsensusBased
(Spring Security)

ProviderManager
(Spring Security)

AccessDecisionVoter

RoleVoter

access
Decision
Manager

Decision
Voters *

jadice server

If an authentication could be performed successfully, subsequently (if nodes under-
lying a restriction are to be called) the AccessDecisionManager54 is requested, if this
authentication meets the restriction. This is done by the RoleVoter by checking the
allowed role(s).

7.1.2. Restrictions

The access on jadice server can be limited in different directions. This happens as a
rule either by AccessRules which limit the access on nodes or by LimitRules which
force limits for jobs or nodes.

The condition if a rule applies is expressed in the Spring Expression Language
(SPEL55). Apart from the in SPEL predefined logic operators and, or, ! (not) or the
relational operators >,<,<=,>=, == and != there are various special operators for
the evaluation of nodes and the values (properties) set there:

Operator Description

access('class name node') Evaluates to true, if a node of the given
type is provided.call('class name node')

property('class name node',
'property name')

Evaluates to the value which a node of
the given type has got as indicated
property. This may be also applied in a
nested way on properties of properties
(see example below).

value('class name node',
'property name')

The following ways are possible to combine these operators:

• rules using access and call are allowed to match on different node types:
z. B. access('com.levigo.jadice.server.nodes.StreamInputNode')
or access('com.levigo.jadice.server.nodes.StreamOutputNode')
A rule with this condition applies for all nodes of type StreamInputNode or
StreamOutputNode

• Rules using property or value may only match on one node type:
z. B. value('com.levigo.jadice.server.nodes.URLInputNode',
'URLs[0].host') != 'localhost' or value('com.levigo.-
jadice.server.nodes.URLInputNode', 'URLs[0].protocol') !=
'http'
A rule with this condition applies only for URLInputNodes whose first indic-
ated URL does not start with „http://localhost“.

For rules which are to take effect depending on the allowed roles there are the op-
erators isAnonymous() and hasRole('role name'). They may also be mixed
with other operators.

e.g. access('com.levigo.jadice.server.nodes.URLOutputNode') and
! hasRole('ROLE_SUPER')

A rule with this condition takes effect, if a client not holding the role „ROLE_SUPER“
tries to access the URLOutputNode.

54 org.springframework.security.access.vote.AbstractAccessDecisionManager
55 http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/expres-

sions.html

jadice server Page 42 of 53

D e v e l o p e r ' s G u i d e

Chart 8: Class hierarchy of security rules
(xml namespace http://www.levigo.com/jadice-server/schema/security)

LimitRule
+ limit : Limit1..*

AccessRule
+ requiredRole : String1..*

AbstractRule
+ name : String
+ condition : String

jadice server

Using these conditions rules of the type AccessRule and LimitRule can be built. The
XML pattern definition which these rules have to follow in the configuration file can
be found within the jar-file <jadice-server>/server-lib/server-core-<Version>.jar
under com/levigo/jadice/server/core/security/jadice-server-security-4.3.xsd.

Rules of the type AccessRule contain one or more elements with the name
"requiredRole" defining which role is required if the indicated condition applies.
These rules are included in the XML configuration with the entry <property
name="nodeAccessRules">.

Rules of the type LimitRule contain one or more references on limits which are
used, if the indicated condition applies. These limits are declared in the XML-file as
normal Spring-Beans which have to possess a class derived from Limit56 and an ID.
If limits of the same class are set with action ABORT both client-sided and by the
security interface, the more restrictive limits have priority.

Such rules whose limits are to be applied only on particular nodes can be inserted in
the paragraph <property name="nodeLimitRules">. Such rules whose limits are to
be used on the complete job can be inserted in the paragraph <property
name="jobLimitRules">; but it should be noted that the operators access, call,
property and value cannot be used in the condition.

7.2. Client-sided use

The client-sided use is limited to the setting57 of access data (credentials58) in the
job:
Job job = ...;
job.setServerCredentials(
 new Credentials("myUsername", "myPassword"));
// Alternatively:
// Simultaneous authentication towards the MOM:
job.setCredentials(
 new Credentials("myUsername", "myPassword"));
Code example: Client-sided authentication

If the authentication cannot be verified by the server, the job fails with this error re-
port (see JobListener#executionFailed):

messageID JS.SECURITY-BAD_CREDENTIALS

reason You could not be logged in with the user name 'unknownUsername'.

cause org.springframework.security.authentication.BadCredentialsException

If the client does not hold the required role in order to be allowed to access a node
or to allocate it with particular values, the job fails with this error report:
messageID JS.SECURITY-INSUFFICIENT_PRIVILEGES

reason You do not possess the required authorisation [required role(s)] for this action:
name of responsible rule

cause org.springframework.security.access.AccessDeniedException

56 com.levigo.jadice.server.Limit
57 Please note that the credentials – depending on the used MOM and its configuration – are

possibly transmitted in plain text.
58 com.levigo.jadice.server.Credentials

jadice server Page 43 of 53

D e v e l o p e r ' s G u i d e

jadice server

8. Monitoring
Supported by the Java Management Extensions (JMX) it is possible to observe jadice
server during its operation and to change some settings during the runtime. Import-
ant core components are interpreted here as Managed Beans (MBeans) so that
these may be strictly observed.

In order to activate the JMX interface the following entries have to be added in the
file <jadice-server>/wrapper/wrapper.log:

wrapper.java.additional.159=-Dcom.sun.management.jmxremote.port=61619
wrapper.java.additional.2=-Dcom.sun.management.jmxremote.authenticate=false
wrapper.java.additional.3=-Dcom.sun.management.jmxremote.ssl=false

Please note that in this example no authentication is prescribed so that even unau-
thorised users might access jadice server by this interface and thus influence the
working process. In the Java SE Monitoring and Management Guide60 it is described
how the authentication may be activated.

Connect yourself with jadice server by using the tools JConsole or Java VisualVM
provided by Sun's Java Runtime Environment. Important components in branch
„com.levigo.jadice.server“ are (see chart 9):

– JobScheduler:
Statistic data for running and already performed jobs may be displayed
here.

– Pools for MS Office and LibreOffice:
Apart from the displaying of presently active Office-instances the pools
may be emptied and thus the office-instances may be shut down. If in the

59 The numbering must be consecutive and must not clash already existing entries.
60 See http://java.sun.com/javase/6/docs/technotes/guides/management/toc.html

jadice server Page 44 of 53

D e v e l o p e r ' s G u i d e

Chart 9: Mbeans-view of a running jadice server instance

jadice server

following jobs needing Office-instances are started, new Office-instances
are started and the respective pools are refilled. Besides the number of
maximally started instances may be changed61.

– Under JMSServerJob each presently running job is shown. These jobs may
be cancelled by the operation “abort”. Besides it is possible to query stat-
istic data about the nodes in use, the corresponding threads and for how
long the single jobs have already been running.

61 This specification is not persisted. When restarting jadice server the value specified in the
configuration files is loaded.

jadice server Page 45 of 53

D e v e l o p e r ' s G u i d e

jadice server

9. Troubleshooting
In this chapter some typical failures and errors are shown which may occur during
the operation of jadice server.

• Error when submitting a job

◦ Error report in client log:
com.levigo.jadice.server.JobException:
 Failure during server-side initialization on JADICE-SERVER-JS.REQUEST
 at
com.levigo.jadice.server.client.jms.JMSJobController.performHandshake(JMSJobController.java:579)
 at com.levigo.jadice.server.client.jms.JMSJobController.submit(JMSJobController.java:365)
 at com.levigo.jadice.server.client.DefaultJobInternalImpl.submit(DefaultJobInternalImpl.java:74)

◦ Error report in server-log:
WARN [; core.ThreadPoolJobScheduler; JadiceServer job scheduler master thread]:
 Not executing job due to expired request message: (…)

◦ Typical cause:
The times of client and server differ.

◦ Solution:
Check the times of client and server and re-synchronize them if neces-
sary.

• Error when converting via MS Office

◦ Error report in server-log:
Exception in thread "main" java.Lang.UnsatisfiedLinkError: (…)\msoffice-lib\jacob-1.14M7-
x86.dll: This application could not been started, because the application configuration is
not correct. To solve the problem please reinstall the application.

◦ Cause
Missing C++-Runtime

◦ Solution
Installation of „Microsoft Visual C++ 2005 SP1 Redistributable Pack-
age (x86)“, see chapter 4.1.7

• Error when converting via MS Office

◦ Error report in server-log:
Processing failed: MSWordNode/MSWordWorker:
JS.SERVER-WORKER_FAILED: Processing for Node MSWordNode failed because of
com.jacob.com.ComFailException: Invoke of: exportAsFixedFormat
Source: Microsoft Word
Description: Error when exporting because this feature is not installed.
 at com.jacob.com.Dispatch.invokev(Native Method)
 at com.jacob.com.Dispatch.invokev(Dispatch.java:858)
 at com.jacob.com.Dispatch.callN(Dispatch.java:455)
 at com.levigo.jadice.server.msoffice.MSWordConverter.convert(MSWordConverter.java:103)
 at com.levigo.jadice.server.msoffice.CommandReceiver.run(CommandReceiver.java:110)
 at com.levigo.jadice.server.msoffice.MSWordConverter.main(MSWordConverter.java:31)

◦ Cause
No native PDF-export installed in MS Office 2007

◦ Solution
Installation of „2007 Microsoft Office Add-in: Microsoft Save as PDF“,
see chapter4.1.7

• Error when converting via MS Office

◦ environment
MS Office 2007 or newer, Windows Server 2008R2, installation of
jadice server as a service

◦ Error report in server-log:

for MSWordNode:
java.lang.Exception: com.jacob.com.ComFailException: VariantChangeType failed
 at com.jacob.com.Variant.toVariantDispatch(Native Method)
 at com.jacob.com.Variant.toDispatch(Variant.java:1976)
 at com.levigo.jadice.server.msoffice.MSWordConverter.convert(MSWordConverter.java:91)
 at com.levigo.jadice.server.msoffice.CommandReceiver.run(CommandReceiver.java:115)
 at com.levigo.jadice.server.msoffice.MSWordConverter.main(MSWordConverter.java:35)

jadice server Page 46 of 53

D e v e l o p e r ' s G u i d e

jadice server

(…)
for MSExcelNode:

Incoming Exception from Converter
java.lang.Exception: com.jacob.com.ComFailException: Invoke of: Open
Source: Microsoft Office Excel
Description: Microsoft Office Excel cannot access the file '(...).xls'. There are several
possible reasons:

• The file name or path does not exist.
• The file is being used by another program.
• The workbook you are trying to save has the same name as a currently opened workbook.

 at com.jacob.com.Dispatch.invokev(Native Method)
 at com.jacob.com.Dispatch.invokev(Dispatch.java:858)
 at com.jacob.com.Dispatch.callN(Dispatch.java:455)
 at com.levigo.jadice.server.msoffice.MSExcelConverter.convert(MSExcelConverter.java:79)
(…)

◦ Cause
MS Office tries to access a not existing folder in the system directory.

◦ Solution
Creating of an empty folder:
C:\Windows\SysWOW64\config\systemprofile\Desktop (for x64)
C:\Windows\System32\config\systemprofile\Desktop (for x86)

◦ see also
MS Office Developer Center62

• Error when converting via MS Office

◦ Error report in server-log:
Word cannot start converter mswrd632.

◦ Cause
Error in MS Word configuration

• Solution:
Cancel registration of converter mswrd632 as described in the Microsoft
Knowledge Base:
http://support.microsoft.com/kb/973904

• Dialogue when converting via MS Outlook

◦ displayed dialogue

◦ Cause
MS Outlook's security regulations forbid access by jadice server

◦ Solution
Installation of „Advanced Security for Outlook“, see chapter 4.1.8

• Error when converting via MS Project

◦ Error report in server-log
WARN [MSProjectConverter] Incoming exception from converter
java.lang.Exception: com.jacob.com.ComFailException: Invoke of: FileOpenEx
Source: Microsoft Project
Description: Unexpected method error.
 at com.jacob.com.Dispatch.invokev(Native Method)
 at com.jacob.com.Dispatch.invokev(Dispatch.java:858)
 at com.jacob.com.Dispatch.callN(Dispatch.java:455)

62 http://social.msdn.microsoft.com/Forums/en-US/innovateonoffice/thread/b81a3c4e-62db-
488b-af06-44421818ef91?prof=required

jadice server Page 47 of 53

D e v e l o p e r ' s G u i d e

http://support.microsoft.com/kb/973904

jadice server

 at com.levigo.jadice.server.msoffice.MSProjectConverter.
 convert(MSProjectConverter.java:73)
(…)

◦ Cause
MS Project not configured correctly

Solution
Allow processing of legacy format, see chapter 4.1.9

• Error when converting via LibreOffice

◦ Error report in server-log
INFO [LibreOfficeInstancePool] Creating an instance
ERROR [ManagedLibreOfficeInstance] Could not bootstrap
com.sun.star.comp.helper.BootstrapException: no office executable found!
 at com.levigo.jadice.server.libreoffice.server.ManagedLibreOfficeInstance.
 launchOOOProcess(ManagedLibreOfficeInstance.java:102)
 at com.levigo.jadice.server.libreoffice.server.ManagedLibreOfficeInstance.
 <init>(ManagedLibreOfficeInstance.java:86)
(…)

◦ Cause
LibreOffice not configured correctly

◦ Solution
Adapt file jadice-server-local.options, see chapter 4.1.6

• Dialogue during PDF-export via LibreOffice

◦ displayed dialogue

◦ Cause
This dialogue is normal when jadice server runs on the same com-
puter while the client development takes place in parallel and another
instance of LibreOffice is open in windows.

◦ Solution
Close all instances of LibreOffice (soffice.exe / bin in task manager)
and of LibreOffice quickstarter. At a new conversion LibreOffice is star-
ted headlessly; the dialogue does not occur any longer.

• Converting with nodes which are not contained in the product by default.

◦ Error report in server-log
javax.jms.JMSException: Failed to build body from bytes.
 Reason: java.io.IOException: <Node-Klassenname>
 at org.apache.activemq.util.JMSExceptionSupport.create(JMSExceptionSupport.java:35)
 at org.apache.activemq.command.ActiveMQObjectMessage.
 getObject(ActiveMQObjectMessage.java:183)
 at com.levigo.jadice.server.core.JMSServerJob.<init>(JMSServerJob.java:267)
 at com.levigo.jadice.server.core.ThreadPoolJobScheduler$SchedulerThread.
 handleMessage(ThreadPoolJobScheduler.java:203)
 at com.levigo.jadice.server.core.ThreadPoolJobScheduler$SchedulerThread.
 run(ThreadPoolJobScheduler.java:122)

jadice server Page 48 of 53

D e v e l o p e r ' s G u i d e

jadice server

Caused by: java.io.IOException:
(…)

◦ Cause
The job created by the client references a node class which is not
provided in the class path of the server.

◦ Solution
Check the server's class path and add the missing library.

• JMS Exception when submitting a job

◦ possible error reports in client-log
javax.jms.JMSException: Failed to build body from bytes.
 Reason: java.io.IOException:
 com.levigo.jadice.server.shared.jms.ServerMessage$InitializationResponse

javax.jms.JMSException: Failed to build body from bytes.
 Reason: java.io.InvalidClassException:
 com.levigo.util.internal.log.qualified.ResolvedQualifiedLogEvent;
 class invalid for deserialization

◦ possible cause
There is more than one JMS provider in the client's classpath.

◦ Solution
As far as possible use only one JMS provider in your application.
If this is not applicable change the order of the classpath so that the
JMS provider that is used for jadice server takes precedence over the
other ones.

• Exception when converting HTML documents / HTML mails

◦ error reports in server log
java.lang.StackOverflowError
 (…)
 at org.lobobrowser.html.parser.HtmlParser.parseToken(HtmlParser.java:642)
 at org.lobobrowser.html.parser.HtmlParser.parseToken(HtmlParser.java:679)
 at org.lobobrowser.html.parser.HtmlParser.parseToken(HtmlParser.java:679)
 (…)
 at org.lobobrowser.html.parser.HtmlParser.parse(HtmlParser.java:507)
 at org.lobobrowser.html.domimpl.HTMLDocumentImpl.load(HTMLDocumentImpl.java:386)
 at org.lobobrowser.html.domimpl.HTMLDocumentImpl.load(HTMLDocumentImpl.java:366)
 at org.lobobrowser.html.parser.DocumentBuilderImpl.parse(DocumentBuilderImpl.java:98)
 (…)

◦ Possible cause
Parsing of bad structured HTML documents exceeds the maximum
stack deepth of the JVM.

◦ Solution
Increase the maximum stack depth of the JVM,
e. g. set the paramenter -Xss2048k in the configuration file
wrapper/wrapper.conf (if using an Oracle JVM).

• Exception when converting MS PowerPoint Files
◦ error in server log

java.lang.Exception: com.jacob.com.ComFailException: Invoke of: Open Source:
Description:
 at com.jacob.com.Dispatch.invokev(Native Method)
 at com.jacob.com.Dispatch.invokev(Dispatch.java:858)
 at com.jacob.com.Dispatch.callN(Dispatch.java:455)
 at com.levigo.jadice.server.msoffice.MSPowerpointConverter.
 convert(MSPowerpointConverter.java:75)

◦ error in MS PowerPoint
◦ Possible cause:

jadice server Page 49 of 53

D e v e l o p e r ' s G u i d e

jadice server

MS PowerPoint needs an additional feature for files containing macros
◦ Solution:

Install the feature “Visual Basic for applications” from the Office In-
stallation

• Exception when converting with LibreofficePortable under Windows 2008:
◦ error in server log

java.lang.NoClassDefFoundError: Could not initialize class
com.sun.star.lib.connections.pipe.PipeConnection
 at com.sun.star.lib.connections.pipe.pipeConnector.connect(pipeConnector.java:110)
 at com.sun.star.comp.connections.Connector.connect(Connector.java:114)
 at
com.levigo.jadice.server.core.util.ManagedObjectPool.borrowObject(ManagedObjectPool.java:52
) at
…

• Solution:
Add the following path to the systems “path” variable:
„<LibreOffice-Verzeichnis> / App/libreoffice/program/“

jadice server Page 50 of 53

D e v e l o p e r ' s G u i d e

jadice server

10. Technical data
Supported formats (excerpt):

– IBM AFP and MO:DCA family

– PTOCA

– PTOCA

– IOCA

– GOCA

– HTML and e-mails

– TIFF, JPEG, PDF

– Archive formats

– ZIP

– GZIP

– RAR

– TAR

– Plaintext, XML, XSL:FO

Required qualifications:

Client-sided:

– jadice client extensions for server communication

– JRE 1.6.0 update 26, or JRE 1.7.0 update 3 or newer

– in use as applet, application or embedded

Server-sided:

– JRE 1.6.0 update 26, or JRE 1.7.0 update 3 or newer

– central memory: from 2 GB, 8 GB recommended

– processor: Pentium4 or higher, 3 GHz or faster recommended, dual processor

– hard disc storage: 80 MB software, 2 GB cache

Communication between server and client components

– Java Messaging Services (JMS)

– Multi-server process and load balancing are supported

Provided converting tools

– Office-Plugins for TIFF-export

– Office-Plugins for PDF-export

– jadice shaper

jadice server Page 51 of 53

D e v e l o p e r ' s G u i d e

jadice server

11. Document history

Version Date Author Changes (syntax: * changed, + new, – omitted)

4.1.x 16.03.09 B. Geißelmeier Completely re-edited

4.2.0.0 02.07.09 B. Geißelmeier + Migration from 4.1.x to 4.2.0.0
* Examples in chapter 5.3 adapted to changed API
+ Description web service interface

4.2.1.0 30.07.09 B. Geißelmeier * Description web service interface
+ Chapter „Generation of web service clients“
+ Chapter „Configuration MS Office“
+ Chapter „Configuration Ghostscript“

4.2.1.1 31.08.09 B. Geißelmeier * Description web service interface
+ Chapter„Job definition within the SOAP request“
* Correction: Description of ExternalProcessCallNode

4.2.1.3 27.11.09 B. Geißelmeier * Configuration MS Office
+ Configuration MS Outlook
* Chapter „Converting e-mails to PDF“
+ Chapter„Troubleshooting“
+ Migration to version 4.2.1.3, chapter “Migration”

4.2.1.5 22.01.10 B. Geißelmeier + Chapter „Monitoring“
* Chapter „Configuration of embedded message broker“
* Chapter „Configuration MS Office“
* Chapter „Configuration wrapper“
+ Migration to version 4.2.1.5, chapter„Migration“

4.3.1.0 25.06.10 B. Geißelmeier + Chapter „Security-Interface“
+ Chapter „Configuration of Limits“
* Chapter „Troubleshooting“
– Chapter „Migration“, from now on in online-documentation

4.3.1.2 09.11.10 B. Geißelmeier * Chapter “Web service Interface”

4.3.1.3 20.12.10 B. Geißelmeier + Chapter “Permanent anchoring of annotations”

4.3.1.5 18.04.11 B. Geißelmeier * Chapter “Configuration of the messaging system”
* Chapter “Configuration MS Office”
* Chapter “Configuration LibreOffice”
* Chapter “Converting e-mails to PDF”
+ Chapter “Configuration MS Project”

4.3.1.6 12.09.11 B. Geißelmeier * Chapter “Troubleshooting”, multiple JMS providers / clock sync.
* Replaced German screenshots with English ones

4.3.1.11 01.02.12 B. Geißelmeier * Chapter “Troubleshooting”, Stack Overflow on HTML conversion

4.3.1.14 21.05.12 B. Geißelmeier * Chapter “Configuration of the messaging system”, Corrected
property names

4.3.1.16 23.07.12 B. Geißelmeier * Chapter “Converting e-mails to PDF”, Clarified parameter
unhandledAttachmentAction

4.3.1.20 28.01.13 F. Intorp + Chapter “Troubleshooting“, Exception when converting MS
PowerPoint Files

4.4.0.0 05.03.13 B. Geißelmeier * removed content concerning outdated java versions
* Chapter “Configuration of the messaging system”, Distinguish
between QueueConnectionFactory and TopicConnectionFactory

4.4.0.1 23.04.13 B. Geißelmeier * Corrected example in “Permanent anchoring of annotations”

4.5.0.0 04.06.13 F. Intorp * Address change

4.5.1.0 02.06.13 F. Intorp * Chapter “Troubleshooting“, Exception when converting with
LibreofficePortable under Windows 2008

jadice server Page 52 of 53

D e v e l o p e r ' s G u i d e

jadice server

jadice server Page 53 of 53

D e v e l o p e r ' s G u i d e

	1. General
	1.1. About this documentation
	1.2. Feedback
	1.3. Online-Service
	1.4. About the jadice product family

	2. jadice server
	2.1. The product's concept
	2.2. Possible applications of jadice server
	2.2.1. Unification and long time archiving
	2.2.2. Tiling
	2.2.3. Virtual documents
	2.2.4. Permanent anchoring of annotations
	2.2.5. Extraction of meta data
	2.2.6. Unification of e-mails
	2.2.7. Central document printing
	2.2.8. Processing of packed files
	2.2.9. Data validation

	3. System architecture
	3.1. Functionality

	4. Installation and configuration
	4.1. Server
	4.1.1. Licence file
	4.1.2. Manual download for hyphenation support
	4.1.3. Configuration of the messaging system
	4.1.4. Configuration of embedded message broker
	4.1.4.1. Clustering

	4.1.5. Configuration wrapper
	4.1.6. Configuration LibreOffice
	4.1.7. Configuration MS Office
	4.1.8. Configuration MS Outlook
	4.1.9. Configuration MS Project
	4.1.10. Configuration logging
	4.1.11. Configuration Ghostscript
	4.1.12. Configuration Multi-VM-Mode
	4.1.13. Configuration web service interface
	4.1.14. Configuration security interface

	4.2. Client
	4.3. Installation in the developing environment Eclipse
	4.3.1. Server
	4.3.2. Client

	5. Application / Functionality
	5.1. Job definition client-sided
	5.2. Job definition server-sided
	5.3. Application scenarios including code examples
	5.3.1. Create a server job
	5.3.2. Create a JobListener
	5.3.3. Configuration of Limits
	5.3.4. Identification of unknown input data
	5.3.5. Extraction of document information
	5.3.6. Merging of multiple PDF documents
	5.3.7. Converting to TIFF
	5.3.8. Permanent anchoring of annotations
	5.3.9. Unpacking of archive files
	5.3.10. Converting unknown input data in a unified format (PDF)
	5.3.11. Converting Office-documents to PDF
	5.3.12. Converting e-mails to PDF
	5.3.13. Controlling of external programmes

	5.4. Implementation of own nodes / workers
	5.4.1. Node class
	5.4.2. Worker class

	6. Web service Interface
	6.1. Structure of a SOAP-message
	6.1.1. Request by means of a template
	6.1.2. Job definition within the SOAP request

	6.2. Structure of a SOAP response
	6.3. Definition of job-templates
	6.4. Generation of web service clients
	6.4.1. JAX-WS reference implementation
	6.4.2. Apache Axis2

	7. Security-Interface
	7.1. Configuration
	7.1.1. Authentication
	7.1.2. Restrictions

	7.2. Client-sided use

	8. Monitoring
	9. Troubleshooting
	10. Technical data
	11. Document history

