
All brand and product names mentioned are trademarks of the respective copyright
holders and are accepted as such.

levigo solutions gmbh
Max-Eyth-Straße 30
D-71088 Holzgerlingen
Telefon: 07031 / 4161-0
Telefax: 07031 / 4161-50
eMail: info@levigo.de

 jadice 4.2.

February 2009

jadice® document
platform

Version 4.2.x

Developer's Guide

j a d i c e d o c u m e n t p l a t f o r m

Carolin Köhler

jadice 4.2.

Contents
1. GENERAL...5

1.1. ABOUT THIS DOCUMENTATION..5
1.1.1. GENERAL...5
1.1.2. FEEDBACK..5

1.2. ABOUT THIS PRODUCT..5
1.3. DISTRIBUTION..5
1.4. ONLINE-SERVICE...6

2. INTRODUCTION...7
2.1. FUNCTIONAL RANGE IN VERSION 4.2..7
2.2. PARTICULAR JADICE FEATURES...7

2.2.1. PROCESSING OF VERY LARGE DOCUMENTS...7
2.2.2. PROCESSING OF VIRTUAL DOCUMENTS...7
2.2.3. LARGE NUMBER OF DIRECTLY SUPPORTED DOCUMENT FORMATS.............................8
2.2.4. SIMPLE INTEGRATION POSSIBILITIES WITH THE JADICE INTEGRATOR API.................8
2.2.5. THE MOST IMPORTANT TECHNICAL FUNCTIONALITIES AT A GLANCE.........................9

2.3. SYSTEM REQUIREMENTS...9
2.4. TERMS...10

2.4.1. THE DOCUMENT MODEL...10
2.4.1.1. DOCUMENTS...10
2.4.1.2. LAYERS..10
2.4.1.3. PAGES...11
2.4.1.4. PAGESEGMENTS...11

2.4.2. ANNOTATIONS..11
2.4.3. RESOURCES...12

2.5. FORMATS..12

3. THE JADICE INTEGRATOR API..14
3.1. AIMS...14
3.2. REALISATION..14

3.2.1. COMMANDS...14
3.2.2. ACTIONS..15
3.2.3. CONTEXT...16

3.3. CONFIGURATION FILES..17
3.3.1. COMMANDS.PROPERTIES...18
3.3.2. MENUCOMPONENTS.PROPERTIES...18
3.3.3. ACTIONS.PROPERTIES...18

4. CLASS SURVEY..19
4.1. VIEWER..19
4.2. DOCUMENT..20
4.3. PAGE..21
4.4. PAGESEGMENT..21
4.5. LOADER..22
4.6. FORMATINFO AND FORMATFILE..22

jadice document platform Version 4.2.x Page 2 of 93

D e v e l o p e r ' s g u i d e

jadice 4.2.

4.7. LOADLISTENER..23
4.8. RESOURCELOADER..24

4.8.1. RESOURCEFILELOADER...26
4.8.2. RESOURCEURLLOADER..26
4.8.3. RESOURCEGROUPLOADER..26
4.8.4. RESOURCEMULTILOADER...27

4.9. SEEKABLEINPUTSTREAMS...27
4.9.1. RANDOMACCESSINPUTSTREAM...28
4.9.2. FILECACHEINPUTSTREAM..28
4.9.3. MEMORYINPUTSTREAM...29

4.10. ANNOTATION..29
4.10.1. CHANGES ON ANNOTATIONS..32

4.11. IMAGEPLUSANNOTATIONFORMATINFO...32
4.12. IMAGEPLUSANNOTATIONFILE...33
4.13. FILENET AND FILENETP8 ANNOTATIONS...33
4.14. RENDERCONTEXT...34
4.15. EDITPANES..34
4.16. BASICJADICEPANEL...36
4.17. ADDONS..37

4.17.1. CREATION...37
4.17.2. CALL BY COMMANDS..37
4.17.3. INTEGRATION IN DIFFERENT ENVIRONMENTS...38

4.18. JADICEBOOKMARK...38
4.19. DOCUMENTBOOKMARKHANDLER..39
4.20. PAGESORTER..40

4.20.1. SUPPORT OF POPUPMENUS IN THE PAGESORTER.......................................40

4.21. NAVIGATORPANEL...41
4.22. LENS...41

4.22.1. HOVERLENS...42

4.23. GRADATIONCURVECONTROL..42
4.23.1. GRADATIONCURVE..43
4.23.2. GRADATIONCURVEFILEHANDLER...43

4.24. PRINTERJAVA2..44
4.25. PRINTMANAGER...44
4.26. FILEOPENER...45
4.27. DOCUMENTSAVER...45
4.28. DEMONSTRATION CLASSES..45

4.28.1. PARAMETER OF THE DEMONSTRATION CLASSES JADICEPANEL AND JADICEMDI........45
4.28.2. PARAMETER OF THE DEMO-APPLET JADICEAPPLET.......................................46

5. TYPICAL APPLICATION EXAMPLES...47
5.1. EMBED VIEWER INTO A FRAME...47
5.2. LOADING PROCESS..48

5.2.1. SIMPLE LOADING PROCESS..48
5.2.2. ASSEMBLE DOCUMENTS...49

jadice document platform Version 4.2.x Page 3 of 93

D e v e l o p e r ' s g u i d e

jadice 4.2.

5.2.3. LAYER...51
5.2.4. SEEKABLEINPUTSTREAM..54
5.2.5. RESOURCELOADER..55
5.2.6. ANNOTATIONS..56
5.2.7. BOOKMARKS..57
5.2.8. GRADATION...58

5.3. SAVING..59
5.3.1. DOCUMENT...59
5.3.2. ANNOTATIONS..60
5.3.3. BOOKMARKS..61
5.3.4. GRADATION...62

5.4. ACTIONS-COMMANDS-CONTEXT..62
5.4.1. EMBEDDING OF MENUS, TOOLBARS, ACTIONS..63

5.4.1.1. CONTEXT..64
5.4.1.2. EMBEDDING...65

5.4.2. ADAPTATION OF ACTIONS..67
5.4.2.1. PROPERTIES...67
5.4.2.2. ADAPTING THE MENU OR TOOLBAR STRUCTURE....................................67

5.4.3. OWN COMMANDS...68

5.5. PRINTING..72
5.5.1. SIMPLE PRINTING...72
5.5.2. SETTINGS...72
5.5.3. ADAPTATION OF RENDERCONTEXT...74

6. LOGGING...75
6.1. JADICE® LOGGING FRAMEWORK FACADE...75
6.2. FIRST STEPS...75

6.2.1. LOG4J..75
6.2.2. SLF4J...76

6.3. POSSIBLE ERRORS...76

7. CONFIGURATION AND SETTINGS..77
7.1. THE MOST IMPORTANT SETTINGS IN DETAIL...78

8. JADICE INTEGRATOR API: SYNTAX DESCRIPTION OF THE CONFIGURATION FILES. . .83
8.1. THE FILE „COMMANDS.PROPERTIES“...83
8.2. THE FILE „MENUCOMPONENTS.PROPERTIES“...84
8.3. THE FILE “ACTIONS.PROPERTIES“..85
8.4. THE FILE „JADICE-VIEWER.PROPERTIES“...87

9. JADICE PUBLIC API AND INTERNAL PACKAGES.......................................89
9.1. JADICE PUBLIC API..89
9.2. JADICE PRIVATE API..89

10. DOCUMENT HISTORY...90

jadice document platform Version 4.2.x Page 4 of 93

D e v e l o p e r ' s g u i d e

jadice 4.2.

1. General

1.1. About this documentation

1.1.1. General

This guide in hand is an introduction to the technical coherences of the jadice®

document platform (in the following shortly called jadice).

This documentation is basically limited to the areas which are interesting to
developers (subsequently called integrators) in order to integrate jadice® in
their own applications.

For a better legibility package names are shown fully qualified only in footnotes.

An API reference in javadoc format is made available as a separate document.

1.1.2. Feedback

If you come across any errors when using this documentation or if you like to
suggest any improvements, please send a possibly detailed message to
solutions@levigo.de.

Your feedback helps us in further developing this documentation. Thanks a lot.

1.2. About this product
jadice has been developed from the platform and format independent
document viewer jadice viewer, which due to its flexibility and power has been
specially used in archiving parts, to a flexible components' solution for the use
in professional document management.

As an easy-to-integrate Java toolbox with useful modules, elaborated interfaces
and helpful additional components jadice offers the base for individual archive
client solutions. Anyway, the document viewer has remained an essential part
of jadice – with an advanced and expanded functional range, though.

1.3. Distribution
jadice is now available in two types of packaged variants each with the same
functional range: as the usual all-in-one product and as a modular solution with
functions combined in units.

Since both variants are contained in the distribution, the integrator may decide
according to situation, use and solution, if he wants to use the hitherto existing
all-in-one solution or just the required and desired modules.

These packaged variants have been made possible by jadice's new architectural
plan which is based on a component structure. There component-librairies and
their dependencies are combined to sensible units. This structure offers
flexibility to the integrator to use only selected functional units, if the complete
solution is to be as compressed and efficient as possible – e.g. in the domain of
web applications where transmission rates are relevant. Alternatively the
reliance of the all-in-one solution still remains by using the complete functional
range.

jadice document platform Version 4.2.x Page 5 of 93

D e v e l o p e r ' s g u i d e

jadice 4.2.

When using the all-in-one variant all functionalities of the jadice document
platform are available for the integrator, but updates and tests have also to be
done for the whole solution.

The modular variant makes it possible for the integrator to use only the
required modules. However, he always has to make sure that he is provided
with all files and librairies depending from each other. Regarding updates and
tests this variant is easy to handle, since only the respective module or the
respective function has to be updated or tested.

A survey of all modules of the jadice document platform and their dependencies
is available in the HTML distribution documentation.

Important note:

jadice document platform requires a Java Virtual Machine 1.5. or higher.

˜ Use for JVM 1.5. or newer the libraries in folder jdk15 or lib-jdk15.

1.4. Online-Service
For developers and integrators we have got an online-service helping you to
state directly your wishes, problems, suggestions or similar concerning jadice
Viewer and to forward it to the respective jadice developer.
Thereupon you will be automatically informed by e-mail about all statements,
displaying of the problem's state up to its solution. Of course, you may add
anytime further information or advice.
If you are interested, please contact solutions@levigo.de.

A HTML documentation – updated to the latest version - with additional
information is provided in English as part of the distribution. You can find it
under
jadice-documentplatform-<<Versionnumber>>-
dist.dir\documentation.html

jadice document platform Version 4.2.x Page 6 of 93

D e v e l o p e r ' s g u i d e

!

jadice 4.2.

2. Introduction

2.1. Functional range in version 4.2
With jadice in generation 4.2 you get a mighty toolbox for the work with
different document data and formats. This paragraph is to give you a short
introduction in the innovations of the jadice document platform.

Due to an improved support of the PDF- and PDF/A-format range the font
types Type1, CompactFont and Type0 can be processed. Furtheron the
FileNet Image Format (fni) – a proprietary FileNet bi-level document format
which has not been supported up to now – may be displayed and used in its full
range.

The previous support of FileNet P7 annotations has been expanded to the
support of FileNet P8 annotations with their full functional range.

Due to a new logging framework it is now possible to integrate easily and
seamlessly other already existing logging systems by delegation into the jadice
document platform. This is realized by a logging facade which offers an
abstraction level of known logging systems like Log4J, JDK 1.4 Logging or
Logback and thus for using them it often only needs an adaptation of the class
path.

Further logging frameworks may be integrated via SLF4J.

2.2. Particular jadice features

2.2.1. Processing of very large documents

† e.g. technical sketches, architecture or site plans: TIFF-files with more than
20.000 pixel2

† e.g. colour-pictures: considerably bigger compressed data volumes

2.2.2. Processing of virtual documents

† Documents can consist of different document data from different origin (e.g.
TIFF and MO:DCA).

† Compound documents are already displayed during the loading of the
belonging document data, if this is allowed by the respective format.

† Different document data can be added to the document consecutively (like
pages) or on top of each other (as various page elements).

† Processing of documents with layers (superposed / parallel page elements)

† e.g. letter-head and letter-text in separate files

† Pages consist of different layers which may come from different
resources.

Due to this flexibility jadice's architecture offers the possibility to create virtual
documents out of different physical documents and to use this composed
structure with full functional range like a simple document.

Virtual documents are often used to represent processes and files belonging
together.

jadice document platform Version 4.2.x Page 7 of 93

D e v e l o p e r ' s g u i d e

jadice 4.2.

2.2.3. Large number of directly supported document formats

Another specialty is the wide range of supported document formats. A listing of
presently supported formats can be found in paragraph 2.5.Format s .

Picture files are rarely loaded with jadice from a local file system by an „open
file“-dialogue. Jadice normally receives document and annotation data from a
document management system.

Further information and a product survey are provided on the levigo website1.

2.2.4. Simple integration possibilities with the jadice Integrator
API

jadice document platform offers very easy and flexible integration possibilities,
i.e. an easy integration of viewer components with a flexible availability and
possible adaptations of functions as well as the reusability and expansion of
existing tools and actions.

† Easy viewer integration:

† BasicJadicePanel: the simpliest possibility to integrate a viewer

† with toolbar, annotation toolbar, status bar, optional menu bar

† changes in tools or menus only by textual adaptation of configuration
files

† Actions and commands: command processing with command and action
patterns

† encapsulation (separation) in single actions

† actions update automatically availability (enable state)

† easy adaptation to corporate identity, corporate design

† flexible changing of features: icons, accessors, inputmaps etc.

† structuring of tool bar and menus by using the configuration file

† simple definition of different look & feels, as well as the accompanying
menu and toolbar structures which can be used according to demand,
e.g., for

† pure research

† processing

† administration etc.

† Provided AddOns:

† AddOns are useful, directly integratable extensions for viewer
components or for document processing.

† For integration AddOns offer functional components as JComponent with
encapsulated functionality and/or additionally window elements as
Jframe/JInternalFrame and/or alternatively as Jrame/JInternalFrame.

1 See http://www.levigo.de/en/document-management/

jadice document platform Version 4.2.x Page 8 of 93

D e v e l o p e r ' s g u i d e

jadice 4.2.

2.2.5. The most important technical functionalities at a glance

† Documents2 are independent of format, i.e. only "containers" for pages.

† Pages3 are independent of format and composed of layers4.

† „Occupied“ layers of single pages, so called page segments, carry the real
document data and are thus format-specific.

† A flexible displaying of contents by virtual documents which may have been
created from different physical document sources. As such even complex
structures like files or processes may be created and used.

† The input/output processing (especially the loading of documents) is laid out
on an optimum memory efficiency. If necessary this behaviour may be
additionally adapted by the integrator to the environmental usage and the
desired requirements.

† Easy integration of supplied or proper functionalities and visual
representations.

2.3. System requirements
Basically jadice works as a pure Java application platform-independently. With
this all operating systems are supported for which a JVM Machine from 1.5.x or
newer is provided.

† JVM from version 1.5. or higher is recommended.

† At least 256MB memory for jadice document platform are recommended.
The required memory of the integrating application should be taken
separately and it should be added to the heapsize of the jadice document
platform in order to determine the recommended heapsize of the whole
application. Then the required memory thus calculated may be provided to
the application by using the VM parameter -xmx.

2 Instances of the class com.levigo.jadice.docs.Document
3 Instances of the class com.levigo.jadice.docs.Page
4 Instances of the class com.levigo.jadice.docs.DocumentLayer

jadice document platform Version 4.2.x Page 9 of 93

D e v e l o p e r ' s g u i d e

jadice 4.2.

2.4. Terms

2.4.1. The document model

Chart 1 shows an outline of jadice's document model. This model consists of
four elements which are further described in the following.

2.4.1.1. Documents

In practise documents can be considered as a summary of pages which are
processed as a unit in an application. On this occasion is to be noticed that no

firm and permanent connection need to exist between documents and data
streams or data formats. A jadice document can obtain its pages from several
data streams or data formats, but even the pages themselves can in regard of
their presentation be composed of data of different data streams.

Thus jadice documents are of a two-dimensional structure:

† they consist of a number (0-n) of logical pages and

† a number (1-n) of presentation layers.

† Page segments which lie in a corresponding displaying layer.

2.4.1.2. Layers

The content of a page can be composed as a sum of the most different
components like e.g. letter-head and letter-text. However, in its presentation
the page appears as a unit. jadice uses layers for this purpose.

Layers present a „vertical“ division of the document in which page segments
are positioned. Different layers are displayed, as a rule, directly superposed.
This means that from the user's view all layers of a document form a closed
unit. Thus layers are comparable to superposed transparent folios.

jadice document platform Version 4.2.x Page 10 of 93

D e v e l o p e r ' s g u i d e

Chart1 - Document modell

D
oc

um
en

t

Page

La
ye

r

Page
Segment

jadice 4.2.

2.4.1.3. Pages

Pages usually represent the smallest unit displayed to the user. They consist,
similar to the documents, of further objects so-called PageSegments.
PageSegments cover within a page the positions determined by the document's
layers. In other words: the document's layers provide a limited number of
„places“ within the page as well as a logical order of these places. These places
can be (but not necessarily) covered within the pages with PageSegments.
Pages don't create images for displaying, they render themselves automatically
into given graphic contexts like e.g. monitor, printer, etc.

2.4.1.4. PageSegments

PageSegments carry the actual document information. Thus they correspond
directly with the according pages of a document data stream. Examples for
PageSegments are:

† The scanned picture of the front or back side of a physically present sheet of
paper or a similar media with NCI-documents.5

† An individually displayed page of a CI-document6 like e.g. ASCII- or PTOCA.

† Annotations set on a page.

PageSegments are integrated by means of layers into the page or the
document and thus they get allocated a „vertical“ position within the page.

2.4.2. Annotations

Annotations are understood as

† comments

† notes

† remarks

† explanations

† notices or

† indications by arrows or coloured areas

which the user can set on a certain page in a document. Annotations are
additional information to a document and do not change the original document.
For this purpose annotation data are managed in an own annotation page
segment.

These annotations can contain information in form of

† text or

† graphic objects for

† illustration / clarification

† highlighting or even for

5 NCI: Non Coded Information like images, language, sound, video etc., which cannot be
recognised and directly processed by the computer. A typical NCI application is the capturing of
documents with scanners and their treating as facsimiles.

6 CI: Coded Information like texts which exist as graphic characters and can directly be processed
and displayed.

jadice document platform Version 4.2.x Page 11 of 93

D e v e l o p e r ' s g u i d e

jadice 4.2.

† fading out / hiding.

2.4.3. Resources

Special formats like AFP & MO:DCA support using elements like logos, forms,
overlays and page segments.

These elements are called resources and can be found in the AFP- or MO:DCA-
document itself (inline) or in an external resource.

2.5. Formats
The following formats are directly supported by jadice:

† PDF/A

† AFP & MO:DCA with following content

† PTOCA

† IOCA

† GOCA

† Page Segment

† Overlays & Forms

† IOCA

† TIFF

† uncompressed

† compressed

† RLE

† Packbits

† Fax G3 / G4 or CCITT T.4 and CCITT T.6

† JPEG (true-colour and grayscale)

† LZW

† DEFLATE

† FileNet Banded Image

† EBCDIC

† ASCII

† JPEG/JBIG/JFIF

† GIF

† BMP

† PNG

† Further optional formats via ImageIO-interface by using Java Advanced
ImageIO Tools

jadice document platform Version 4.2.x Page 12 of 93

D e v e l o p e r ' s g u i d e

jadice 4.2.

† JPEG2000

† and further formats depending on Java Advanced ImageIO version like

† PNM

† (partly) FlashPix

† etc.

† Further optional formats via ImageIO-interface as independent jadice
products:

† DJVu

† DiCOM

jadice document platform Version 4.2.x Page 13 of 93

D e v e l o p e r ' s g u i d e

jadice 4.2.

3. The jadice Integrator API

3.1. Aims
One of the aims of the jadice document platform is to offer very simple
integration possibilities with the lowest effort possible for integrators, but still
high flexibility and adaptability. Therefore three points of interest have been
traced:

† BasicJadicePanel – the simplest way to integrate a viewer
As JPanel it can be optionally integrated in existing layouts and it contains a
toolbar with the most important viewer tools, an annotation toolbar for creating
annotations, a status bar for the displaying of page numbers and of the zoom
factor and optionally a menu bar if the embedding component is a frame able
to set a menu bar. Adaptations, like appearances or hot keys as well as the
structure of tools in toolbars or menus, can be simply reached by changing the
configuration. Also compare paragraph 4.16.BasicJadicePanel.

† AddOns - Useful viewer extensions directly integrable

Viewer extensions, also called AddOns, like the navigator or the page sorter,
are available as JComponent with encapsulated functionality and uniform API,
alternatively as a JFrame / JInternalFrame.

For further information about AddOns consult paragraph 4.17.AddOns.

† Command processing with Command and Action Pattern

All viewer specific tasks like zoom or rotation, but also the activating of AddOns
were encapsulated in single commands which can be called up by actions.
These actions are responsible for their GUI representation, e.g. by icon,
accelerator or tooltip, and they are able to bundle commands. Behaviour and
appearance of actions, but also which commands should be activated, are
defined in a configuration file, so in case of adaptations integrators don't have
to worry about more programming efforts. In addition to this it is possible with
only little programming effort to expand already existing commands in their
functionality according your own wishes or to integrate completely own
commands.

The cooperation of actions and commands combined with an easy configuration
ability offers a strong and flexible framework which makes adaptations in the
easiest way with the least programming effort possible.

In addition to this different look&feels as well as menu, context-menu and
toolbar structures can be freely defined in the configuration files. An example of
such an application is described in chapter 5.4.Actions-Commands-Context.

3.2. Realisation

3.2.1. Commands

The commands' processing and their binding to user face elements base on
„command“ and „action“ design patterns. The action pattern is already used in
SWING, the use of the command pattern serves for a further detaching of the
command functionality.

Basic tasks like zooming, rotating or activating of AddOns are encapsulated
within the jadice package into independent commands which can be called up

jadice document platform Version 4.2.x Page 14 of 93

D e v e l o p e r ' s g u i d e

jadice 4.2.

by actions and which take over the actual performance of actions. A command
receives for the performance a number of objects, called context
(3.2.3.Context), which reflect the user interface's state at the time of the
action's performance. Each GUI-element can contribute own objects to this
number of objects.

All commands are successors of the abstract basis class AbstractCommand
which most important methods of are shortly described in the following:

† doExecute(Collection)

is called up by the enclosing CommandAction for realisation of the actual
command. The arguments are the objects contained in the context.

† checkQuickly(Collection)

is called up by the enclosing CommandAction in order to perform an
Enabled-Check. The arguments are the objects contained in the context.
The checking methodology within this method should be performant, since
the command state is very often checked. The command state is always
verified, when the context has been changed (part of the Enabled-Check of
the CommandAction). Context changes may be caused by changing the
document structure, like the loading of further pages and page segments,
but also changes in the displaying, like rotation or zoom, even the scrolling
of a page within the viewer may cause under certain circumstances a
checking of the commands' state.

† checkDeeply(Collection)
final test before calling up the “doExecute ()“ method. The arguments are
the objects contained in the context. In contrast to the „checkQuickly“
method which is very frequently caused „checkDeeply“ is only activated
before calling the „doExecute“-method. It allows a complex state checking
and context validation before the command is being perfomed and even
allows, if the checking fails, to prevent the „doExecute“ from performing.

† isAvailable()

initial test before taking in a CommandAction in a menu or toolbar structure.
Due to this method a command may verify during its creation, if it is
basically available or not. If a command is not available because an edge
condition is not fulfilled, e.g. particularly needed resources are not provided,
this command automatically won't be created or taken up in the required
structure.

In general the commands' practicability (verification of the enabled-state by
„checkQuickly“ or „checkDeeply“) is tested along the following pattern:

† Checking, if the expected argument types (classes) are contained in the
expected number in the passed context objects.

† Checking, if the command's performance is possible with the content of the
passed arguments.

3.2.2. Actions

Actions7 bind performable commands to GUI elements like buttons, toolbar
buttons or menu items. They contribute on the one hand to the appearance of

7 javax.swing.Action

jadice document platform Version 4.2.x Page 15 of 93

D e v e l o p e r ' s g u i d e

jadice 4.2.

the GUI element by providing e.g. icons or labels, on the other hand they also
control the state of the GUI elements as e.g. the enabled/disabled state.

CommandActions8 can additionally bundle one or more commands9 (see also
3.2.1.Commands) and perform in their “actionPerformed(...)“ method.

Furtheron each CommandAction is bound to a context (see also 3.2.3.Context)
the changing of which causes an enabled-check. This check includes a check of
all containing commands. Only if all of them are performable, the action is also
set as performable.

Objects contained in the context are passed to the commands for performance.
Thus the context does not only provide the preconditions to define the enabled
state of a CommandAction, but its context objects influence also the
performance of activated commands.

Extensions of CommandActions are in general not necessary, since the
properties are defined by the configuration file actions.properties.

3.2.3. Context

Instances of the class Context10 connect GUI elements, CommandActions and
commands. GUI elements can be understood as semantic units. Example: a
window contains a viewer instance, a menu bar and a toolbar. Each action
which happens within this window may have an effect on the enabled state, but
also on the way how the tools in the toolbar or the menu items in the menu bar
are performed. But the tools or items may also work with the window's objects.
Thus the window builds a logical unit in itself, the single elements of which
depend on each other regarding their state and their performability.

A context object accompanies a GUI component (as a client property of a
JComponent) – the window's RootPane in the example above – and may
contain any number of objects which may be determinant for performance and
state of activated elements within this component.

Furthermore instances of the class Context inform registered interested parties
(ContextChanged-Listener11) about the context's changes. This regards changes
on the contained objects, but also semantic changes of the context which may
be provoked by calling the method „contextChanged()“.

When building up the GUI component CommandActions receive for creation a
reference to a context object and register there as ContextChangedListener.
With each context changing operation the CommandAction instance checks its
state (enabled state) by querying all contained commands about their state
(see 3.2.1.Commands „checkQuickly(...)“ method). The state checking is based
on the objects contained in the context.

CommandActions are performed in two steps. First a final test of all commands
is done (see #3.2.1Commands „checkDeeply(Collection)“ method), the result of
which must be successful, before the commands are performed by the method
„doExecute(Collection)“. At this the objects contained in the context are also
passed.

Analogical to the hierarchical component structure of GUI elements their
contexts can also be organised hierarchically. In order to be able to decide in
more complex situations with several contexts which objects of different

8 com.levigo.util.swing.action.CommandAction
9 com.levigo.util.swing.action.Command
10 com.levigo.util.swing.action.Context
11 com.levigo.util.swing.action.ContextListener

jadice document platform Version 4.2.x Page 16 of 93

D e v e l o p e r ' s g u i d e

jadice 4.2.

contexts belong to the collection of objects of superior contexts, single contexts
may be active or inactive. The contexts' activity state is oriented to the
focussing state of the associated GUI elements. As a rule: a context is active, if
a contained GUI element without an associated context is active.

Under certain circumstances CommandActions of the parent-component may in
regard of state and performance depend on the state of the child-component
reflected in its associated context. But since the CommandActions only know
the elements of their context, objects of the child-context must be able to
become temporarily part of the parent-context. For this contexts may be
instantiated in three modes or states of aggregation:

† Context.NO_CHILDREN Individual context, all GUI child-components
own no further context or the elements of a possible child-context are not
relevant for CommandActions of the parent-context.

† Context.ACTIVE_CHILD GUI child-components may have contexts, but
only elements of the active child-context are relevant for CommandActions
of the parent-context and are temporarily added to this.

† Context.ALL_CHILDREN GUI child-components may have contexts,
elements of all child-contexts are relevant for CommandActions of the
parent-context and are temporarily added to this.

For de/registration of child-contexts at the parent-context the class Context
provides the following methods:

† addChildContext(Context)

Adds the given context as child-context.

† addToParentsContext()

Adds the context to its parent-context. The context object is always filed
as a client property of the associated GUI component. The parent-
context is determined by browsing the component's hierarchy „from
bottom to top“ for a parent-context. For this reason it is advised to
perform this method correctly so that the component's hierarchy is
already determined.

† removeChildContext(Context)

Removes the given child-context.

† removeFromParentsContext()

Removes the context of its parent-context. As already described in
„addToParentsContext“-method, a determined component's hierarchy should
be ascertained in order to perform the method correctly.

3.3. Configuration files
Configuration files describe appearance, keyboard settings and structure of
menus and toolbars of supplied commands. For adaptation of these properties
to the integrating environment, in order to add own commands or to create
different look & feels for different possible applications, configuration files may
be adapted.

Please note that the configuration files are supplied in internationalised versions
and are used automatically according to the country code of the operating

jadice document platform Version 4.2.x Page 17 of 93

D e v e l o p e r ' s g u i d e

jadice 4.2.

system. Accordingly changes of these files should be always done in all
versions.

In the following paragraphs functions, contents and the interaction of single
configurations are explained in detail. The precise syntax of the files can be
found in 8.jadice Integrator API: Syntax description of c onfiguration files .

3.3.1. commands.properties

This configuration creates a mapping between a unique command name, which
is used in other configurations as reference, and its realisation, the so called
exact class reference.

Commands are created by reflection. In order to avoid instantiation mistakes,
the path and class names must be stated correctly.

Further information are in paragraph 8.jadice Integrator API: Syntax description
of c onfiguration files .

3.3.2. menucomponents.properties

The menu component configuration defines the structure of menus, submenus,
context menus and toolbars.

For this a clear name is given to a structure, e.g. a menu or a toolbar, which
can be later used to create an instance of a menu for integration. Actions which
should be contained in this structure are determined as a comma separated list
of action-command-names. Action-Command-Names must be provided by
referring actions.properties files.

Like this definitions of further substructures like submenus, context menus and
similar may be determined by the menu components configuration.

Further information are in paragraph 8.jadice Integrator API: Syntax description
of c onfiguration files .

3.3.3. actions.properties

In this configuration properties of the CommandActions like Tool-Icon, Tooltip
Text, Accessor and similar are defined. Beside the definition of the
CommandAction's external appearance it is also determined in this
configuration which commands should in which order get to performance by
releasing the CommandActions.

Clear command terms from referring commands.properties configurations are
used for the commands' identification.

Further information are in 8.jadice Integrator API: Syntax description of the
c onfiguration files .

jadice document platform Version 4.2.x Page 18 of 93

D e v e l o p e r ' s g u i d e

jadice 4.2.

4. Class survey

The following survey is limited on a description of classes most important for
integrators.

A detailed description of the collaboration of single classes and precise
application examples are found in paragraph 5.Typi cal application examples .

Interfaces, classes and methods are additionally documented in a separate API
reference.

4.1. Viewer
The viewer12 is one of the central classes of the jadice component architecture.
It takes over the administration, handling and displaying of documents and
pages. The viewer being a JComponent respectively JavaBean is easy to
integrate in own architectures and layouts. It consists of a displaying area and
appropriate scroll bars. At the same time the viewer offers from the integrator's
point of view an interface of the most important functions for document/page
viewing, like

† scrolling within a document

† document zoom

† page zoom

† document rotation

† page rotation

† zoom policy, etc.

A viewer instance is able to display or edit exactly one document. Registered
listeners, e.g. the integrating application, are informed about the most
important changes on the document, its displaying or on the viewer itself.

This happens by using PropertyChangeEvents13 or PropertyChangeListener14.
Interested users log in as PropertyChangeListener at the appropriate viewer
instance: qualified (exactly for a defined property) or unqualified (for all
properties). For a precise identification of the respective property, property
names are declared in the viewer as public constants.

The viewer obtains for displaying a document15- reference. By using appropriate
„getter“ and „setter“ methods a reference to this document can anytime be
obtained or changed. There is no need to pay attention on the document's
state or the moment when a document change is taking place. Properties of the
class Document are described in chapter 4.2.Document.

The viewer supports - for an optimal displaying and higher-performance
working - different zoom policies with document or page change. For example,
newly set documents can always be displayed in the „ZoomToFit“ mode, i.e.
the document is optimally adapted in height and width for displaying in the
viewer. Other zoom policies are:

12 com.levigo.jadice.Viewer
13 See also PropertyChangeListener and PropertyChangeSupport in the Java 2 Platform API

Specification
14 See also PropertyChangeEvent and PropertyChangeSupport in the Java 2 Platform API

Specification
15 com.levigo.jadice.docs.Document

jadice document platform Version 4.2.x Page 19 of 93

D e v e l o p e r ' s g u i d e

jadice 4.2.

„ZoomToWidth“: adapt document's width optimally in viewer, suitable for
documents with pages of same size.

„ZoomToHeight“: adapt document's height optimally in viewer, suitable
for documents with pages of same size.

„PageZoomToWidth“: adapt page's width optimally in viewer, suitable
for documents with different page sizes.

„PageZoomToHeight“: adapt page's height optimally in viewer,
suitable for documents with different page sizes.

„PageZoomToFit“: adapt page's height and width optimally in viewer,
suitable for documents with different page sizes.

„ZoomDefault“: the standard document zoomfactor is used for
displaying.

The zoom policy is according to the set policy applied to page or document
change and can respectively be queried and set for a viewer instance.

Zoom policies are less relevant than a page's or a document's zoom properties
set by the user. As long as a document is referred to in a viewer instance, the
viewer memorises page and document specific zoom and rotation settings done
by the user. If e.g. the user sets page 3 to 200% page zoom, the viewer will
always display page 3 with the zoom factor of 200%, even if it has meanwhile
been scrolled to a different document page. With document changes the viewer
abandons these render settings and the set zoom policy is used again.

Beyond the mere document viewing the viewer makes it possible to lay self-
defined, active layers over the document's displaying. Such layers may render
themselves, but may also receive input events like mouse or key events.
Integrators may add on this way of page viewing (eventually active)
decorations like e.g. a paperclip icon that performs an action on mouse click. In
the jadice component structure such layers are called EditPanes.

For further information see 4.15.EditPanes.

4.2. Document
A document is a format independent container for pages and page layers.
Instances of the class Document16 contain one or more pages which may
contain page segments in different layers (see also chart 1 in 2.4.1.The
do cument mode l).

A document instance offers the possibility to get qualified access to the
contained pages and page layers, i.e. it is possible to add, delete and move
pages and page layers to an instance of the class document by using public API
methods.

All changes of the document's structure are publicised to registered interested
parties (DocumentListener17). The interface DocumentListener defines an
interface for information about changes on a document. Such changes may be
e.g. adding/deleting or reassorting of pages, changing of pages, page
segments or layers and modifying of the document's status. An according
adapter class of the interface DocumentListener is also provided by the API.

16 com.levigo.jadice.docs.Document
17 com.levigo.jadice.docs.DocumentListener

jadice document platform Version 4.2.x Page 20 of 93

D e v e l o p e r ' s g u i d e

jadice 4.2.

In addition to this a name and a specific ResourceLoader18 may be assigned to
each document.

ResourceLoader enable the access on external resources for MO:DCA or AFP-
documents. MO:DCA and AFP documents may contain or refer to internal
(inline) or external resources. Such resources may be e.g. logos, letter heads or
signatures. Access on such external resources of AFP or MO:DCA documents is
effected by a ResourceLoader (see 4.8.ResourceLoader).

Examples for creating and loading of documents are found in 5.Typi cal
application examples.

4.3. Page
A document can contain one or more pages, a page can consist of different
page segments (PageSegment19), but it is unlike a document visually displayed
by the viewer as a page unit .

An instance of the class Page20 allows access on the contained page segments
and holds a reference to the document which contains the page. Beyond this
the page offers information about the original, scaled, rotated and the
displayed page size as a summarised unit of all page segments.

The according access methods are in detail:

† getSize():

original size in base units (converted on 7200dpi)

† getRotatedSize():

original size in base units (converted on 7200dpi), zoom factor and rotation
included

† getScaledSize():

displayed page size (converted on device resolution), zoom factor included,
rotation not included

† getRenderedSize():

the current page size (converted on device resolution), zoom factor and
rotation included

4.4. PageSegment
Page segments are part of a page and carry the actual raw data information of
the corresponding segment.

PageSegments21 may thus offer the following information to integrators:

† data format of the raw data, e.g. Tiff or MO:DCA

† original resolution of the raw data

† provided and scaled size of the segment

† page containing the page segment

18 com.levigo.jadice.docs.resource.ResourceLoader
19 com.levigo.jadice.docs.PageSegment
20 com.levigo.jadice.docs.Page
21 com.levigo.jadice.docs.PageSegment

jadice document platform Version 4.2.x Page 21 of 93

D e v e l o p e r ' s g u i d e

jadice 4.2.

4.5. Loader
The Loader22 is a central class for all document loading processes. Integrators
may anytime create an instance by using the default constructor of the class
and so fill a new or already existing document synchronously or
asynchronously.

A created document can be passed already in its „unfilled“ state to the viewer
for displaying. The viewer recognises automatically when the first page
respectively the first page segment in a page has been loaded and displays it,
though the loading process in the background has not been finished yet. This is
an advantage in particular with slow network connections and large documents.

A loader can be used for one or more loading processes and provides for this
purpose different loading methods. The different loading methods allow the
integrators the simple loading process of a document, but also loading
processes in a certain layer, from a particular page and/or in a particular
format.

Loading processes normally proceed asynchronously in order to enable e.g. a
faster reaction of the GUI without having to wait till the eventually longer
lasting loading of the document has been finished. However, under certain
circumstances it is of advantage to let proceed loading processes
synchronously. If the integrator wants e.g. to attach in a document several
image files in a specified sequence, the loader can be changed over to
synchronous processing.

Notices about the progress of the loading process are transmitted to registered
interested parties (LoadListener23) by activating the „loadStateChanged“
method. Normally these notices are activated in the current load-thread. In
connection with GUI components it may be of advantage, though, to have
notices activated on the Event Dispatch Thread. If this is requested, the loader
may be simply changed by a corresponding method.

MO:DCA and AFP documents may contain internal (inline) or external
resources. For the loading of external resources, which are often in different
locations than the document raw data, ResourceLoader24 may be used. They
support the loading process by providing access on external resources. For this
purpose ResourceLoaders should be set in the loader or in the document before
the loading process starts. ResourceLoaders set in a document are particularly
used for loading processes into this document. If the document has not
indicated a ResourceLoader of its own, it uses the ResourceLoader registered
in the loader. ResourceLoaders registered in the loader are kept static in order
to enable a simple application-wide access and to may be used by other loader-
instances.

For more details about ResourceLoaders see 4.8.ResourceLoader.

Detailed information about Loaders, LoadListeners, ResourceLoaders as well as
their class and method signatures you will find in the jadice API documentation.
An example for the loading of a document is described in 5.Typi cal application
examples beschrieben.

22 com.levigo.jadice.docs.resource.Loader
23 com.levigo.jadice.docs.resource.LoadListener
24 com.levigo.jadice.docs.resource.ResourceLoader

jadice document platform Version 4.2.x Page 22 of 93

D e v e l o p e r ' s g u i d e

jadice 4.2.

4.6. FormatInfo and FormatFile
The API of the jadice document platform offers for each supported image
format a format class which supports loading processes into the represented
format. The naming of these classes follows a predetermined naming
convention.

Format supporting classes for loading and saving:

FormatNameFormatInfo -> e.g. TIFFFormatInfo25

FormatNameFile -> e.g. TIFFFile26

FormatNameFormatInfo serves loading processes of a format

FormatNameFile serves saving processes.

Without any indication of a FormatNameFormatInfo instance the loader tries to
define the format of the data to be loaded before the actual loading process
starts. For this it is first checked which formats are provided as Format Services
in the class path. Subsequently each FormatInfo instance found is requested, if
it fits to the data stream to be loaded. If such a FormatInfo instance is found,
the data stream's format is detected and the actual loading process starts.

But if the loader gets an instance of FormatNameFormatInfo for a loading
process, the defining of the format may be omitted and the data's loading may
begin immediatelly. Thus loading processes may be accelerated and format
confusion avoided. Please note that if a FormatNameFormatInfo not fitting to
the data stream is indicated, the loading process is cancelled and a search for
alternative FormatInfo instances will not take place.

An example:

jadice supports annotations compatible to IBM ContentManager. These
annotations are kept as MO:DCA structures in the archive. If annotations are
loaded without specifying a FormatNameFormatInfo, during the loading process
a MO:DCA-document and annotations as additional document information
might be mixed-up. More about this in chapter
4.11.ImagePlusAnnotationFormatInfo and 4.12.ImagePlusAnnotationFile.

Additionally FileNet-compatible annotations are supported. (Further information
are found as part of the distribution in the manual Annotations: Load – Save –
Edit)

4.7. LoadListener
The interface LoadListener is available for integrators, if they are interested in
the flow of document loading processes. The loader informs registered
LoadListeners by calling the „loadStateChanged“ method about the loading
progress. The loading state is described by an instance of a LoadEvents27.

A LoadEvent contains the following information:

† the relevant document

† the relevant page

† which kind of event it is (page loaded, loading process finished, loading
error) and

25 com.levigo.jadice.formats.tiff.TIFFFormatInfo
26 com.levigo.jadice.formats.tiff.TIFFFile
27 com.levigo.jadice.docs.resource.LoadEvent

jadice document platform Version 4.2.x Page 23 of 93

D e v e l o p e r ' s g u i d e

jadice 4.2.

† the event's origin. Mostly the corresponding FormatNameFormatInfo or
loader instance in which the respective event has occurred.

In former jadice versions (2.x) it was necessary to wait for the end of a loading
process, before a document could be set by means of a LoadListener into the
viewer for displaying. This is not necessary any more.

So LoadListeners have no functional background in the present version. They
serve merely informing purposes.

LoadListeners may be logged on in the loader in different implementations and
instances and may be used for multiple loading processes without having to
register again.

Notifications to LoadListeners are normally forwarded on the current load-
thread. Under certain circumstances, e.g. in the interaction with GUI
components, it may be interesting to maintain the call of the
„loadStateChanged“ on the event dispatch thread. In such a case integrators
can make the loader deviate all messages on the EDT by using the
„setSendNotificationsOnEDT“ method.

4.8. ResourceLoader
ResourceLoader classes are used for AFP or MO:DCA documents in which
internal (inline) and external resources may be integrated within the document.

External resources are reloaded during the loading process of the document by
means of ResourceLoaders. Resources are referenced in the document by a
name and may be read by different implementations of ResourceLoaders as
InputStream.

The class ResourceLoader represents the interface for implementation of the
classes described in the following, but also for own implementations. The
different ResourceLoaders of the jadice package are described in the following
paragraphs.

jadice document platform Version 4.2.x Page 24 of 93

D e v e l o p e r ' s g u i d e

jadice 4.2.

The ResourceLoader interface defines the method
„getResourceStream(String resourceName, String defaultExt)“ which
returns an InputStream of the resource data, if the searched resource is found
and if an access is possible.

The ResourceLoader to be used during the loading process must be disclosed
either to the document or to the loader by the method
„setResourceLoader(ResourceLoader resourceLoader)“. On this way AFP
documents get the possibility to access during the loading a corresponding
ResourceLoader and consequently the correct resource.

In doing so keep this in mind:

† ResourceLoader in the document:

† is prioritised to possibly registered ResourceLoader of the loader

† is a document's property, i.e. each document maintains a reference of its
own on a possibly registered ResourceLoader.

† ResourceLoader in the loader:

† is a loader's static property, thus easy application-wide access on the set
ResourceLoader and validity for all loader instances.

† ResourceLoaders of a document are prioritised to registered
ResourceLoader of the loader.

Chart 2 gives a survey of the ResourceLoaders' class hierarchy. The
ResourceLoader is an interface which integrators may use for their own
implementations. The classes described in the following represent different

jadice document platform Version 4.2.x Page 25 of 93

D e v e l o p e r ' s g u i d e

Chart 2 - Class diagram Loader / ResourceLoader

jadice 4.2.

useful realisations of this interface which, if necessary, may be set joined in a
MultiLoader, a loader instance or a document.

4.8.1. ResourceFileLoader

The ResourceFileLoader28 supplies InputStreams on the basis of file resources
(files of the local file system or network resources visible by the file system).

A list of search paths (directories in the file system) for file resources is given to
the constructor. The search paths are to be separated by the operating system
specific constant java.io.File.pathSeparator.

By calling the method getResourceStream(String resourceName, String
defaultExt) an InputStream is created using the transferred parameters, in
which resourceName represents the file name without the preceding path and
without extension and defaultExt represents the file name's extension.

4.8.2. ResourceURLLoader

Resources accessible by URLs may be used by the class ResourceUrlLoader29.

The operating mode is to a large extent identical with that of the class
ResourceFileLoader. Instead of the search path leading to the file a list of
comma separated URLs is given to the constructor. Here it is also possible to
transfer a single URL instead of the list.

The InputStream is as defined in the interface returned by
getResourceStream(String resourceName, String defaultExt).

4.8.3. ResourceGroupLoader

External resources of AFP- or MO:DCA documents may be separately or in
resource groups available. Resource groups are the summary of different
resources to a data stream, in which contained resources may be maintained as
InputStream by the ResourceLoader. The actual source of a resource group
may either be saved as a file in the file system or in a document management /
archive system. A document can get one or more resources from the very
resource group or from different resource groups.

The ResourceGroupLoader30 offers for instantiation two different constructors:

† ResourceGroupLoader(): creates an „empty“ ResourceGroupLoader to
which different resources may be added by using the different addXXX
methods (see below).

† ResourceGroupLoader(InputStream is): creates a
ResourceGroupLoader which is initialised with an InputStream to a resource.

Further resource groups may be added by using different addXXX methods.

† addFile(String fileName): adds a file resource

28 com.levigo.jadice.docs.resource.ResourceFileLoader
29 com.levigo.jadice.docs.resource.ResourceUrlLoader
30 com.levigo.jadice.formats.modca.ResourceGroupLoader

jadice document platform Version 4.2.x Page 26 of 93

D e v e l o p e r ' s g u i d e

jadice 4.2.

† addStream(InputStream is): adds a resource which is already available
as InputStream

† addUrl(String urlName): adds a URL resource

4.8.4. ResourceMultiLoader

The class ResourceMultiLoader31 offers the most flexible implementation of the
ResourceLoader-Interface. It behaves like a simple ResouceLoader, but it unites
in itself multiple registered ResourceLoaders. All implementations described
before may be by using the methods

† addLoader(ResourceLoader loader) added or

† removeLoader(ResourceLoader loader) removed.

With that an application is able to integrate all available resources and
corresponding ResourceLoaders into a ResouceLoader, to register in the loader
or in the document and to access as usual per „getResourceStream(...)“ on the
required resource InputStream, without having to care about where and how
the actual resource is made available.

An example for the creation and registration of ResouceLoaders is provided in
5.Typi cal application examples .

4.9. SeekableInputStreams
For an efficient and memory saving processing of large document data amounts
the viewer tries, if allowed by the image format, to read, to process and to
buffer dynamically only document data required for the current page displaying
instead of keeping all image data completely in the memory.

This procedure requires data streams, whose file index may be positioned
arbitrarily.

jadice viewer uses to this end SeekableInputStreams. The class
SeekableInputStream32 is an abstract basis class which extends the
InputStream33 by the following methods:

† seek(int) position the file index

† length() File size in bytes

† getFilePointer() position where file index is positioned

31 com.levigo.jadice.docs.resource.ResourceMultiLoader
32 com.levigo.jadice.io.SeekableInputStream
33 java.io.InputStream

jadice document platform Version 4.2.x Page 27 of 93

D e v e l o p e r ' s g u i d e

jadice 4.2.

Chart 3 offers a survey of the most common implementations of the interface
SeekableInputStream provided by the jadice API.

Using SeekableInputStreams is easy for integrators. jadice provides for certain
types of data streams different sorts of SeekableInputStreams which wrap the
actual data stream and may be delivered to the loader in the required
„loadDocument“ method. Nothing more to do for the integrator.

The most common SeekableInputStreams are shortly described in the following
paragraphs.

4.9.1. RandomAccessInputStream

RandomAccessInputStream34 represents a SeekableInputStream for locally
available image data (i.e. as file in filesystem).

This class offers a constructor with a parameterised file (a file object of the
image file) for instantiation. This file is opened with a particular
FileInputStream which is kept for the following reading processes. During the
processing in jadice the FileInputStream remains open to the document file and
a file index is positioned within this file. It should be noticed that the source file
must not be changed as long as the document is opened in the viewer. This
leads, e.g. when using Windows, eventually to an access locking on the
respective file.

4.9.2. FileCacheInputStream

To process image data in the viewer a temporary file is created in which the
read data are stored. After having used them, but at the latest on the next start

34 com.levigo.jadice.io.RandomAccessInputStream

jadice document platform Version 4.2.x Page 28 of 93

D e v e l o p e r ' s g u i d e

Chart 3 - class diagram of the most common SeekableInputStreams

jadice 4.2.

of the viewer, the temporary files, that are not required anymore, are deleted.
The temporary files are stored in the temporary directory predetermined by the
system, if the viewer is not configured differently.

For instantiation this class offers a constructor which takes in a given
InputStream and creates a work file in the defined temporary directory. This
temporary file is removed after use.

Another constructor offers the possibility to indicate apart from the
InputStream a temporary directory and a flag showing if the temporary file is to
be deleted after use.

4.9.3. MemoryInputStream

Image data are buffered in the central memory.

Similar to the FileCacheInputStream this class offers a constructor that takes in
a given InputStream and keeps it for reading processes. A second constructor
allows additionally an indication of the block size in which data are to be
buffered in the central memory.

This sort of internal data administration is often used in context with applets.
An advantage of this data storage is an extremely fast access on document raw
data. However, the higher memory requirements due to the data storage in the
central memory prove to be rather disadvantageous.

4.10. Annotation
Annotations are additional information to a document which may have the form
of textual notes or graphic objects for highlighting. Annotations are displayed in
an own layer above the document. Thus annotations occur to the user as an
optical unit with the document. As additional document information annotations
do not belong physically to the actual document. Changes on documents do not
change the actual document.

jadice document platform Version 4.2.x Page 29 of 93

D e v e l o p e r ' s g u i d e

jadice 4.2.

Provided types are:

† NOTE:

textual note, displayed as yellow post-it

† HIGHLIGHT:

highlighting, displayed as a filled and transparent rectangle

† MASK:

masking of parts of a displayed document by a filled, not transparent
rectangle

† ARROW:

a pointer to a particular part of the document displayed as an arrow

† ELLIPSE:

a not filled ellipse, appropriate for framing a certain area, e.g. an
amount, a date or a name

† RECTANGLE:

a not filled rectangle. Like the ellipse, appropriate for framing a certain
area, e.g. an amount, a date or a name

† LINE:

jadice document platform Version 4.2.x Page 30 of 93

D e v e l o p e r ' s g u i d e

Chart 4 - Inheritence hierarchy annotations– rough survey

jadice 4.2.

a line e.g. to underline a certain word or number

† TEXT:

a textual note placed directly on the page with a transparent
background, not to be saved

† FREEHAND:

a freehand draft. When using this type a polygon is created due to the
mouse movement. Appropriate for highlighting of unequal areas which
can't be framed by an ellipse or a rectangle

† STAMP:

a „stamp“ with transparent background, coloured frame, able to be
rotated with a coloured textual content

Chart 4 shows a rough survey of the annotations' class architecture. The class
Annotation35 is an abstract class which represents the basis of all annotations.
ShapeBasedAnnotation36 represents a further abstraction layer which forms the
basis of all annotations based on geometrical forms (Shape37). As a concrete
annotation this class is not relevant, for integrators, however, who want to
define their own annotations it represents a useful basis.

With jadice viewer the main emphasis was put on a logical inheritance due to
the displaying and processing properties of single annotation types. This grants
on the one hand consistency and the avoiding of redundancies, on the other
hand a flexible exchange of the annotation support for different archive
systems or completely self-defined annotations is possible.

With user interaction annotations are administered by the viewer component. It
allows users to create different types of annotations, to delete them and to
change their properties. The type of an annotation to be created depends on
the viewer's mode at the creation time. This mode is set indirectly by the user
activating a corresponding tool of the annotation toolbar or by the integrator
using the method AnnotationCreatorPane38.setAnnotationMode(int).

If integrators like to direct the annotation administration themselves or to edit
the programming of annotations, they find further information on this subject in
the jadice viewer annotation documentation (jadice Viewer: Annotations –
loading, saving, editing).

In order to load or to save annotations in the ImagePlus format, the classes
ImagePlusAnnotationFormatInfo39 and ImagePlusAnnotationFile40 may be used.
More about this is in the following chapter.

Respectively FileNet and FileNet P8 annotations may be loaded or saved with
the aid of the classes FileNetAnnotationFormatInfo41, FileNetAnnotationFile,
FileNetP8AnnotationFormatInfo42 and FileNetP8AnnotationFormatInfo43. Further
information about the use of FileNet annotations is found in the jadice viewer
annotation documentation (jadice Viewer: Annotations – loading, saving,
editing).

35 com.levigo.jadice.annotation.Annotation
36 com.levigo.jadice.annotation.ShapeBasedAnnotation
37 java.awt.Shape
38 com.levigo.jadice.annotation.AnnotationCreatorPane
39 com.levigo.jadice.formats.annoiplus.ImagePlusAnnotationFormatInfo
40 com.levigo.jadice.formats.annoiplus.ImagePlusAnnotationFile
41 com.levigo.jadice.formats.annofilenet.FileNetAnnotationFormatInfo
42 com.levigo.jadice.formats.annofilenetp8.FileNetP8AnnotationFormatInfo
43 com.levigo.jadice.formats.annofilenetp8.FileNetP8AnnotationFile

jadice document platform Version 4.2.x Page 31 of 93

D e v e l o p e r ' s g u i d e

jadice 4.2.

Note:

The loading and saving of annotations must be done explicitly and is e.g. not
done automatically at the document's loading.

Note:

Not all archive systems support all annotation types provided by jadice. So e.g.
FileNet does not know any ellipse or mask annotations; IBM Content Manager
ImagePlus® for OS/390 or AS400 supports only highlight, note and mask
annotations, whereas IBM ContentManager for Multiplatforms allows all types
of annotations.

By a simple textual change on the configuration integrators may activate or
deactivate the requested annotation types.

For further information about this subject see chapter 5.4.2.2. Adaptation of
the men u o r t oolbar s truc ture or the jadice viewer annotation documentation
(jadice Viewer: Annotations – loading, saving, editing).

4.10.1. Changes on annotations

Changes on annotations are propagated with the aid of the interface
AnnotationListener44. Applications that like to be informed about property
changes of existing annotations like size, position, colour, etc. but also about
the creating or removing of annotations may register as AnnotationListeners in
the class AnnotationEventcaster45. A logon in the class AnnotationEventcaster is
always carried out globally for all annotation changes within the current
application independently of document or viewer instances. That means that a
registered AnnotationListener is informed within the whole application about
changes on annotations by the method

- annotationChanged(AnnotationEvent e).

The supplied AnnotationEvent46 provides information which annotation was
changed in which way. For this the following methods of the class
AnnotationEvent may be used:

† getAnnotation() provides a reference to the changed
annotation. With aid of this annotation access is possible on the enclosing
annotation page segment, the corresponding page and the document.

† getEventType() indicates kind of change, e.g. size, position,
colour, selection state, etc.

† getNewValue() indicates new property value of annotation,
e.g. new colour.

† getOldValue() indicates original property value, e.g. previous
colour.

44 com.levigo.jadice.annotation.AnnotationListener
45 com.levigo.jadice.annotation.AnnotationEventcaster
46 com.levigo.jadice.annotation.AnnotationEvent

jadice document platform Version 4.2.x Page 32 of 93

D e v e l o p e r ' s g u i d e

!

jadice 4.2.

4.11. ImagePlusAnnotationFormatInfo
In order to avoid a mix-up of IBM VisualInfo/ImagePlus-compatible annotations
with MO:DCA documents during the loading process, it is necessary to pass an
instance of the class ImagePlusAnnotationFormatInfo to the loader in the
loadDocument() method.

ImagePlusAnnotationFormatInfo is a format information for IBM
VisualInfo/ImagePlus compatible annotations. This class ensures during the
loading process that the loaded data are not interpreted as an independent
MO:DCA document, but considered as additional document information, just as
annotations, and that they are administered and displayed in a layer of their
own „above“ the document.

An example of annotation loading is in chapter 5.Typi cal application examples .

Note:

Up to IBM ContentManager Vs. 7.x annotation properties were resolution
independent. This has changed with version 8.x. With that up to version 7.x
annotations could be loaded independently of the image document. From
version 8.x on integrators should load annotations only after the document's
loading process has finished, otherwise errors in the annotations' positioning
and size are expected.

Note:

Like ImagePlus compatible annotations FileNet annotations may also be
displayed and edited by the viewer. The respective FormatInfo class for FileNet
annotations is FileNetAnnotationFormatInfo.

4.12. ImagePlusAnnotationFile
ImagePlusAnnotationFile is used for saving annotations in the ImagePlus
format. In order to get access on the annotations to be saved, a document with
annotations that are to be saved is passed in the constructor to the
ImagePlusAnnotationFile.

Just like the loader provides different loading methods, each FormatNameFile
instance offers also different loading methods for a general or qualified (e.g.
only certain pages) saving. The easiest way to save all annotations of a
document into an OutputStream is by calling the method
„save(OutputStream)“.

See the jadice viewer API documentation for more detailed information.

4.13. FileNet and FileNetP8 annotations
Like ImagePlus compatible annotations FileNet and FileNetP8 annotations may
also be displayed and edited by the viewer. The respective FormatFile class for
FileNet annotations is FileNetAnnotationFormatFile respectively
FileNetP8AnnotationFormatFile.

jadice document platform Version 4.2.x Page 33 of 93

D e v e l o p e r ' s g u i d e

!

!

jadice 4.2.

Further information about using FileNet and FileNetP8 annotations may be
found in the jadice distribution in the annotation documentation (jadice viewer:
Annotations – Loading, Saving, Editing).

4.14. RenderContext
On some points of this document it is referred to the class RenderContext47.

Normally integrators hardly work directly with instances of this class, but the
properties and tasks of the class RenderContext are still presented at this point
for a better understanding.

For the displaying of a page no images are created in the jadice viewer, but the
pages render themselves including all their segments into the provided graphic
contexts e.g. display, printer, etc.

Such a rendering process is always accompanied by an instance of the class
RenderContext. RenderContext encapsulates different displaying features which
determine stringently the rendering process and thus also the displaying
properties.

The displaying attributes are divided into direct attributes like zoom, rotation or
similar, and ProcessingSettings48. Direct-attributes may be requested directly
and also changed by an instance of the class RenderContext.

ProcessingSettings are attributes of a special nature which summarize and
describe displaying properties of a very particuar type, e.g. the
AnnotationRenderSettings49. Visibility properties of annotations may be set by
AnnotationRenderSettings. Thus it is possible to make all annotations in/visible
or just annotations of a certain type.

Further information may be taken from the API documentation and the jadice
Viewer Annotation Documentation.

In addition to this the RenderContext provides affine transformations for an
easy conversion between the document's and the device's coordinate system.

As already mentioned in chapter 2.4.1.The d o cument model the pages
contained in documents may get their content from multiple data streams or
data formats, but even the pages themselves may consist of data of different
data streams. Since these image data may be of different formats and different
resolution, the viewer maintains internally a document coordinate system and
transforms only for displaying into the particular device coordinates. According
to this page segments administrate their data in document coordinates. A
transformation in consideration of the zoom factor and the rotation only takes
place during the rendering process into a provided graphic context.

4.15. EditPanes
Jadice viewer offers the possibility to extend the viewer's functionality in a
flexible way. For this document-independant displaying layers, so called
EditPanes which, similiar to page sements, overlay the document transparently,
may be added to the viewer. These layers may influence the documents'
displaying, but also receive input events and activate event-directed user

47 com.levigo.jadice.docs.RenderContext
48 com.levigo.jadice.docs.ProcessingSettings
49 com.levigo.jadice.annotation.AnnotationRenderSettings

jadice document platform Version 4.2.x Page 34 of 93

D e v e l o p e r ' s g u i d e

jadice 4.2.

interactions. In contrast to page segments, which are part of a page or a
document, EditPane instances do not belong to a page, but are document
independent displaying layers of a viewer.

The basis class of all EditPanes is the AbstractEditPane50 which offers amongst
others the following methods for extension:

† render(...)
Own implementations may overwrite this method in order to place additional
hints on the page. These may be e.g. page decorations, text, signs, icons
and much more. The method gets as parameter a Graphics Context
(Graphics2D), a RenderControls51 (RenderContext with the viewer's current
displaying properties) and a RenderObserver. The Graphics Object may be
used to display the required object or text. RenderContext supplies
eventually needed information about zoom, rotation or similar. If a
RenderObserver has been passed, it may be used – if necessary - to activate
asynchronously a repaint in so called dirty-regions.

† getEditEventListener()

EditPanes can receive mouse or keyboard InputEvents. For their processing
by EditPanes this method should return an implementation of an
EditEventListener52. An EditEventListener is an interface which provides
different methods for the processing of mouse or keyboard events. A
corresponding adapter class is provided by EditEventAdapter53.

EditPanes suit e.g. to display integration-specific annotations on a page in any
form and eventually to react actively on InputEvents.

Activating an EditPane is done by registering on the viewer. For this purpose
the viewer offers the methods:

† addEditPane(anEditPane)

† removeEditPane(anEditPane)

A list of all EditPanes registered in a viewer instance may be received by means
of the viewer method:

† Collection getEditPanes()

An application example:

The integrating application has got additional information to a page. This is to
be visualised for the user by a „paper clip“ icon on the page. If the user clicks
on the icon, a window with the additional information is to pop up.

This can be easily realised by an EditPane. The EditPane renders, if additional
information are available, a „paper clip“ icon in its „render“ method. The
related EditEventListener reacts on mouse events. After checking if the mouse
click has taken place on the icon, the window displaying the additional
information is opened.

50 com.levigo.jadice.AbstractEditPane
51 com.levigo.jadice.docs.RenderControls
52 com.levigo.jadice.EditEventListener
53 com.levigo.jadice.EditEventAdapter

jadice document platform Version 4.2.x Page 35 of 93

D e v e l o p e r ' s g u i d e

jadice 4.2.

Another typical application example for an EditPane is the class HoverLens.
Further information can be taken from 4.22.1.HoverLens.

4.16. BasicJadicePanel
The easiest way how to integrate a viewer is offered by the class
BasicJadicePanel54. BasicJadicePanel offers a complete, fully functional viewer
sight and is as JPanel55 easy to embed into the user interface of integrating
applications.

This class contains:

† a viewer instance

† a toolbar with the most important displaying and editing possibilities

† an annotation toolbar for creating annotations (to be folded in and out)

† a status bar

† a context menu

† (optional) a menu bar

54 com.levigo.jadice.gui.BasicJadicePanel
55 javax.swing.JPanel

jadice document platform Version 4.2.x Page 36 of 93

D e v e l o p e r ' s g u i d e

Chart5 - BasicJadicePanel

jadice 4.2.

Menus and toolbars are based on the new action and command concept of the
viewer. Accordingly no further programming effort is necessary for the
changing or adapting of single tools respectively of the structure of menus or
toolbars. Only the required changes in the configuration files
menucomponents.properties and actions.properties must be done. Own tools
may be integrated as well.

More detailed information are in 3.3. C onfiguration files , 5.4.Actions-Commands-
Context and 8.jadice Integrator API: Syntax description of the C onfiguration
files.

BasicJadicePanel is an extension of the class AbstractJadicePanel56.
AbstractJadicePanel only unites in itself a viewer and an interacting status bar.
This class leaves the implementation of toolbars and menus to its descendants.
If integrators don't want to use the viewer's action and command concept, it
may be inherited directly of this class – but then toolbars and menus have to be
created by the integrators themselves.

As a further aid how toolbars and menubars may be created, but also as a
basis for own developments, the class BasicJadicePanel is also provided in the
distribution as sourcecode in the example-src directory.

4.17. AddOns
Beside the displaying of documents the jadice document platform offers some
helpful and useful extensions like document or page survey, bookmarks and
similar which may be used in interaction with a viewer instance.

In the following all these classes are called AddOns and are described in the
chapters 4.18.JadiceBookmark to 4.23.GradationCurveControl.

Properties belonging to all AddOns are summarised in this very chapter.

4.17.1. Creation

An AddOn interacts always with a viewer instance respectively a document or
the pages contained within. For this reason a viewer instance must always be
associated to an AddOn. This may already happen at the creation of an AddOn
or later by using the provided method „setViewer(Viewer)“. With that each
AddOn can always be bound to a new viewer instance or to put it in other
words: an AddOn can serve different viewers, but only one at the same time.

Available constructors:

† Default- constructor

† constructor with a viewer instance

4.17.2. Call by commands

The jadice viewer package provides in general two implementations of
commands for the displaying of the respective AddOn:

† ToggleAddOnName

56 com.levigo.jadice.gui.AbstractJadicePanel

jadice document platform Version 4.2.x Page 37 of 93

D e v e l o p e r ' s g u i d e

jadice 4.2.

Example: ToggleSorter. Shows/hides the respective AddOn embedded in a
JFrame

† ToogleInternalAddOnName

for use in MDI environments: Shows/hides the respective AddOn embedded
in a JInternalFrame.

For own implementations these commands can be overwritten or own
commands can be registered.

Further information concerning commands are in chapter 3. The jadice
Integrator API, 5.4.Actions-Commands-Context and 8.jadice Integrator API:
Syntax description of configuration files.

4.17.3. Integration in different environments

If a viewer instance is associated to an AddOn, relevant changes for this AddOn
are recognised and accordingly updated. Bookmarks for example update
independently their page number, if pages of a document are resorted within
the viewer.

If AddOns are applied in an environment with multiple viewer instances, they
should be informed by the method „setViewer(Viewer)“ about the viewer
active at that time in order to be able to update themselves correctly.

For an easy integration all AddOns are descendants of
javax.swing.JComponent. In addition to this jadice package offers
corresponding JFrames or JinternalFrames.

† AddOnNameFrame

as JFrame, with access method on the embedded AddOn and a
„setViewer(Viewer)“ method which allows a switching between viewer
instances.

† AddOnNameInternalFrame57

as JInternalFrame, with access method on the embedded AddOn and a
„setViewer(Viewer)“ method which allows a switching between viewer
instances.

4.18. JadiceBookmark
Bookmarks are useful devices, if preferrably worked with documents containing
multiple pages and if certain pages are to be displayed without long searching.
In such a case these pages may be bookmarked.

For a comfortable control of markers set within the document, instances of the
class JadiceBookmark58 are used in the jadice viewer. This class represents a
bookmark within the jadice package and can be set as a marker to a particular
page. In addition to this displaying properties - current at the time of the
bookmark's creation – of the page like rotation, zoom or similar are also
administrated. When activating the bookmark at a later date the corresponding
page is displayed again according to its displaying properties saved in the mark.

57
58 com.levigo.jadice.addon.bookmarks.JadiceBookmark

jadice document platform Version 4.2.x Page 38 of 93

D e v e l o p e r ' s g u i d e

jadice 4.2.

A bookmark carries the following properties:

† page number

† page

† document

† rotation

† zoom factor

† Page position in viewer (Pan-Point), useful for displaying of pages which are
larger than those of the viewer. The page view is automatically scrolled by
the Pan Point e.g. in the right corner at the bottom.

† A textual description of the marker to be identified by the user

The programme internal use and creation of bookmarks is specified in chapter
4.19.DocumentBookmarkHandler.

The jadice package offers to the end user commands for a direct control and
administration of page markers:

† BookmarkToggleCommand59

This command creates/removes a bookmark on/from the current page. If a
bookmark exists on the current page, it is selected. The activating of the
command deletes the according bookmark. Otherwise the command is
unselected and the activating creates a bookmark with the current settings
like page number, rotation, zoom factor and pan-point.

† BookmarkBrowsingCommand60

With this command it may be scrolled between existing bookmarks. The
direction, if it should be scrolled to the preceding or the next bookmark of
the current document, may be defined as a command parameter. Predefined
in the jadice delivery version are:

† NextBookmark and PrevBookmark61

† BookmarkRemovalCommand62

According to configuration this command deletes all bookmarks of a
particular document or all existing bookmarks. Already predefined in the
jadice delivery version are:

† RemoveBookmarks and RemoveAllBookmarks63

4.19. DocumentBookmarkHandler
The central class for programme internal editing and administrating of
bookmarks is the DocumentBookmarkHandler64. An instance of this class may
be received by the static method „getInstance()“.

59 com.levigo.jadice.addon.bookmarks.BookmarkToggleCommand
60 com.levigo.jadice.addon.bookmarks.BookmarkBrowsingCommand
61 In com.levigo.jadice.resources.properties.commands.properties
62 com.levigo.jadice.addon.bookmarks.BookmarkRemovalCommand
63 In com.levigo.jadice.resources.properties.commands.properties
64 com.levigo.jadice.addon.bookmarks.DocumentBookmarkHandler

jadice document platform Version 4.2.x Page 39 of 93

D e v e l o p e r ' s g u i d e

jadice 4.2.

Integrators can use this class in order to load from a property object already
existing bookmarks before their further editing or to save it in a property object
after the editing.

Beyond this the DocumentBookmarkHandler offers different methods in order
to carry out the bookmark administration in a totally programme internal way:

† add bookmark

† delete single bookmark

† delete all bookmarks of a page

† delete all bookmarks of a document

† edit bookmark

† activate bookmark (-> a given viewer displays the corresponding page
according to bookmark settings)

† access on

† all bookmarks

† all bookmarks of a document

† all bookmarks of a page

† number of bookmarks

† query, if bookmarks have been changed

† loading

† saving

Under certain circumstances it may be of advantage to get informed about
changes on bookmarks. For this purpose integrators may register
implementations of the interface BookmarkListener65 at the
DocumentBookmarkHandler.

Using the DocumentBookmarkHandler makes it much easier for integrators to
edit bookmarks, since administration and synchronisation are already part of
the handler and need not to be realised by the integrator.

4.20. PageSorter
Jadice is able to display a document's pages minimised in form of thumbnails.
Using the mouse one or more pages may be selected and moved by „drag and
drop“. The page order is automatically adapted in the viewer. The page
displayed in the viewer as well as all selected thumbnails are colour-highlighted.
Double-clicking on a ThumbnailPanel activates this page in the viewer.

If the PageSorter is to be used as a mere page survey of a document, the
sorting functionality may be switched off by the method
„setSortingEnabled(boolean)“.

The PageSorter's functionality is provided by the class PageSorter66 which being
a JComponent can very easily be integrated in the user interface of the
integrating application.

Being a viewer AddOn the comments in 4.17.AddOns apply for the PageSorter.

65 com.levigo.jadice.addon.bookmarks.BookmarkListener
66 com.levigo.jadice.addon.pagesorter.PageSorter

jadice document platform Version 4.2.x Page 40 of 93

D e v e l o p e r ' s g u i d e

jadice 4.2.

4.20.1. Support of PopupMenus in the PageSorter

The PageSorter supports the use of self-defined JPopupMenus in order to
extend its functionality and usability.

Integrators may add self-defined PopupMenus for different purposes to the
PageSorter:

† a JPopupMenu for displaying on minimised pages:
For functions referring to pages (e.g. „remove page“) .

† a JPopupMenu for displaying on the background of the used panel:
For functions applying globally (e.g. „activate/deactivate sorting“).

Depending on the position (on a page or between the pages in the PageSorter)
in which the context menu is requested by the user and if such a
corresponding popup menu is set, either the global or the page referring popup
menu opens. Of course, it is also possible to set the very same context menu
as global and page referring menu.

The functions belonging to the offered menu items are to be put into realisation
by the integrator.

Menus may be set in the PageSorter by using the following methods of the
PageSorter:

† setPanelPopupMenu(JPopupMenu popupMenu)
Sets JPopupMenu to be displayed on the panel

† setThumbnailPopupMenu(JPopupMenu popupMenu)
Sets JPopupMenu to be displayed on the thumbnails

4.21. NavigatorPanel
For the editing of large pages or if a very high zoom factor is set in the viewer,
jadice viewer offers a page survey of a single page.

The current page is presented in a minimised way as a thumbnail, whereas the
section displayed by the viewer is visualised as a small transparent rectangle
over the page. This rectangle can be moved by the mouse in order to navigate
within a page, i.e. to scroll the displayed page sector in the viewer.

The page survey is provided by the class NavigatorPanel67 and being a
JComponent it may be embedded in any way into the integrating application.
The navigator works in two different modes:

† page is displayed with rotation 0°

† page is displayed with rotation used in the viewer

This mode may be requested by the method „getFollowViewerRotation()“
or set by „setFollowViewer-Rotation(boolean)“. In order to call
additionally the user's attention to the chosen mode, a description text
integrated in the thumbnail view of the page may be set for each mode.

Being a viewer AddOn the comments in 4.17.AddOns apply for the
NavigatorPanel.

67 com.levigo.jadice.addon.navigator.NavigatorPanel

jadice document platform Version 4.2.x Page 41 of 93

D e v e l o p e r ' s g u i d e

jadice 4.2.

4.22. Lens
jadice viewer supports a lens view for a particularly close displaying of page
details. The lens displays an extremely magnified page sector according to the
mouse-cursor position in the viewer.

To fix the lens a simple mouseclick on the corresponding passage in the viewer
is enough, thus the fixed page detail may be for example compared with a
different passage of the page. The fixed state is visualised to the user by a
„frozen“ marking, the text of this marking may be requested/adapted by
„getter-/setter“ methods.

The zoom scaling may be requested or changed by mouseclicking into the lens
or by the aid of the methods „getScale()/setScale()“.

The lens is provided by the class Lens68 and being a viewer AddOn the
comments in 4.17.AddOns apply.

4.22.1. HoverLens

In contrast to the lens in a separate window, there is alternatively the
HoverLens69. A HoverLens corresponds to a lens bound to mouse movements
and hovering above the page view in the viewer.

A HoverLens may present itself in two shapes (rectangle or round) and in
different sizes, in which case the desired look may be determined by the
method “setHoverShape(...)“ and the dimension
„setHoverSize(Dimension)“.

A fixing of the HoverLens is also possible and may be set or released by the
ctrl.-key combined with a mouseclick.

Just as in the case of the lens the zoom scaling may be requested or changed
by mouseclicking or by the methods „getScale()/setScale()“.

As an extension of the class EditPane (see also 4.15.EditPanes) HoverLens
instances do not represent a JComponent which is to be integrated. Instead of
that for the de-/activating of a HoverLens the corresponding instance is
de-/registered in the viewer. This happens by:

† viewerInstance.addEditPane(hoverLensInstance)
† viewerInstance.removeEditPane(hoverLensInstance)

4.23. GradationCurveControl
In order to change the displaying of image data jadice offers a changeable
transmission curve of scaled pixel intensity to displayed pixel intensity on the
display. The transmission curve is provided as a GradationCurve instance in the
RenderContext.

The class GradationCurveControl70 visually presents a gradation curve and
allows to define, to move or to delete the curve's nodes. A first order spline
interpolation takes place over the curve's nodes in order to get a continued
curve progression.

68 com.levigo.jadice.addon.lens.Lens
69 com.levigo.jadice.addon.lens.HoverLens
70 com.levigo.jadice.addon.gradation.GradationCurveControl

jadice document platform Version 4.2.x Page 42 of 93

D e v e l o p e r ' s g u i d e

jadice 4.2.

An instance of a GradationCurveControl may edit any gradation curves or even
interact with a viewer instance.

Thus this class works in two different modes:

- a gradation curve is set the indicated curve is changed, an
interaction with the viewer does not take place. A gradation curve is
represented by the class GradationCurve, compare 4.23.1.GradationCurve.

- a viewer instance is set the gradation curve used by the viewer
is applied, an interaction with a viewer takes place.

Being a viewer AddOn the comments in 4.17 AddOns apply for the
GradationCurveControl.

4.23.1. GradationCurve

This class contains the specifying points (data background) of a gradation
curve, more precisely of an illustration between the pixel and displayed
intensity.

As an extension of the class NaturalCubic-Spline1D71 the gradation curve
defines itself by an amount of key points which due to the nature of gradation
curves must conform to certain properties.

Gradation curves may be held and edited totally independent of viewer
instances. They may be used in various ways, e.g. gradation curves can be
defined for document printing or can be used for own luminosity commands as
fixed settings.

Properties of gradation curves may be loaded or saved as properties object.

Please note that gradation curves only effect a change when displaying image
data! Text and other render elements like lines, shapes or similar remain
untouched in their displaying.

4.23.2. GradationCurveFileHandler

GradationCurveFileHandler72 is a utility class for loading and saving gradation
curves in/from a file system.

An object of the class GradationCurveFileHandler may either be instantiated for
a GradationCurve or a GradationCurveControl and it provides different methods
for the loading/saving of gradations.

† openGradationCurveFromFile()

A file selection is displayed, the file selected by the user is loaded.

† openGradationCurveFromFile(File)

The indicated file is loaded.

† openGradationCurveFromFile(String)

The file indicated by a file name is loaded.

† saveGradationCurveToFile()

71 com.levigo.util.math.NaturalCubicSpline1D
72 com.levigo.jadice.util.GradationCurveFileHandler

jadice document platform Version 4.2.x Page 43 of 93

D e v e l o p e r ' s g u i d e

jadice 4.2.

A file selection is displayed, a file with the indicated name is saved in the
path selected by the user.

† saveGradationCurveToFile(File)

The information is saved to the indicated file.

† saveGradationCurveToFile(String)

The information is saved to the file indicated by the file name.

4.24. PrinterJava2
PrinterJava273 is the central class for document printing out of jadice. This class
is derived from the abstract basic class AbstractPrinter74 which offers basic
printing functionality and may be used by integrators to realise own printers.

An instance of the class PrinterJava2 can be obtained by the default-
constructor, alternatively a constructor with a parameterised PrinterJob can be
used.

Before starting to print a document it is necessary to set a document instance
providing the pages to be printed. Alternatively an array of the pages to be
printed may be set instead of a document.

Furtheron a RenderContext may be passed in order to determine displaying
properties of the rendering process within the provided printer device. As a
standard the viewer's RenderContext can be used here, but an instance
adapted by the integrator is also possible, so e.g. a render context with a
special gradation curve for printing processes or adapted
AnnotationsRenderingHints for the displaying or hiding of annotations. Some
specifications of the RenderContext are ignored when printing, since they are
unchangeably provided by the printing device. This refers to indications like
zoom, rotation and similar.

Further optional printing information may be given for a PrinterJava2 instance:

† indication of the page format by getter-/setter methods or as user input
(dialogue)

† indication of the pages to be printed by getter-/setter methods or as user
input (dialogue)

† adapt page optimally into printing range, e.g. by adapting the page size or
even by automatic rotating

† if the printing process should be done synchronously / asynchronously

Beyond this an implementation of the interface PageDecorator75 may be
indicated. PageDecorator is an interface for the modification of printing results,
e.g. for the indication of the page number, the document name, user
indications etc. Two methods are provided for this:

† decoratePreRender(...)

Rendering of additional information before the rendering of the page.

† decoratePostRender(...)

Rendering of additional information after the rendering of the page

The final call of the method „print()“ results in the document's printing.

73 com levigo.jadice.docs.printer.PrinterJava2
74 com levigo.jadice.docs.printer.AbstractPrinter
75 com.levigo.jadice.docs.printer.PageDecorator

jadice document platform Version 4.2.x Page 44 of 93

D e v e l o p e r ' s g u i d e

jadice 4.2.

Further information may be read in the API documentation.

4.25. PrintManager
The class PrintManager76 is used to simplify printing processes. Integrators who
only want to initiate an asynchronous standard printing or who want to have a
standard page format defined by the user may do this without any complex
configurations of PrinterJava2 instances by using one of the many static
methods of the class PrintManager.

Further information about this class are in the API documentation.

4.26. FileOpener
An interesting utility class of the jadice package is the class FileOpener77.
Instances of this class make it very easily possible to load image data and
eventually corresponding annotations from a file system.

An instance of the FileOpener may be used in order to load an image file with
eventually corresponding annotation information. If no document to be loaded
has been indicated, the user is asked by displaying of a dialogue box for file
selection to select a document. After a confirmed selection a corresponding
loading process is initiated. All further steps of the loading process as well as
the search for a corresponding annotation file are automatically taken over by
this class.

4.27. DocumentSaver
Corresponding to the class FileOpener the class DocumentSaver78 is available
for developers. With the aid of this class jadice documents (see also paragraph
4.2Document) may be saved in the local file system or in a free selectable
OutputStream.

The DocumentSaver supports the saving of all formats which may be displayed
by the viewer. However, format conversions or document changes are not
carried out and supported by this class.

4.28. Demonstration classes
In your jadice distribution there are different demonstration classes which allow
to get to know jadice document platfom a bit. For integrators these classes
beside further demo classes are additionally available in the source code.

For further information see the distributed documentation. The following
information is considered as a supplement to this documentation.

76 com.levigo.jadice.docs.printer.PrintManager
77 com.levigo.jadice.util.FileOpener
78 com.levigo.jadice.util.DocumentSaver

jadice document platform Version 4.2.x Page 45 of 93

D e v e l o p e r ' s g u i d e

jadice 4.2.

4.28.1. Parameter of the demonstration classes JadicePanel and
JadiceMDI

The exemplified applications JadicePanel and JadiceMDI contained in the
default package process an „-open“ parameter which allows directly at the
programme's starting to indicate an image file to be opened.

† -Open

Opens the document indicated fully qualified in the path.

Ex.: -open=c:\dokuments\test1.tif

The command line call is as follows:

java -cp lib-all-in-one/jdk15/jadice-documentplatform-<version>-all.jar;.

JadicePanel -open=c:\dokuments\test1.tif

or

java -Xmx256m -cp ib-all-in-one/jdk15/jadice-documentplatform-
<version>-all.jar;.

JadicePanel -open=c:\dokuments\test1.tif

with a heightened heap-size.

4.28.2. Parameter of the demo-applet JadiceApplet

The exemplified applet JadiceApplet also contained in the default package
processes the following parameters:

† LOADITEM

document to be opened at the start

† IOHANDLER

class of the IOhandler to be used, fully qualified class name of
implementation, without any specification the standard IOhandler of the
jadice package is used.

† LOADERBASE

provides the place where the documents may be found and from where
they may be loaded. Without any specification the applet's Codebase is
used.

† RESBASE

provides the place where external resources are to be found, without any
specification the applet's Codebase is used.

† jadice.viewer.tmps-path (only for applets with write / read permission)
defines the temporary directory to be used. If the applet has got write
permission in a local directory, this may be used to cache already read
document data, compare 4.9.2FileCacheInputStream.
Without any indication temporary files will not be used.

jadice document platform Version 4.2.x Page 46 of 93

D e v e l o p e r ' s g u i d e

jadice 4.2.

5. Typical application examples

The following paragraphs show clearly the connection between the classes
presented in paragraph 4. Class survey . On the basis of some exemplified
applications it is shown how jadice may be integrated in own applications.

5.1. Embed viewer into a frame
In order to get a closer look on the jadice viewer and as a basis for further
examples in this chapter, a window containing a viewer is created by the class
TestViewerFrame.

public class TestViewerFrame extends JFrame{
private BasicJadicePanel viewerPanel;
public TestViewerFrame(){
super("Test the - jadice \u00ae viewer");
setContentPane(viewerPanel = new BasicJadicePanel());
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
pack();
}
/**
 * Returns a reference to embedded viewer
 * @return Viewer
 */
public Viewer getViewer() {
return viewerPanel.getViewer();
}
/**
 * Opens a Frame containing a viewer
 * @param args
 */
public static void main(String[] args) {
SwingUtilities.invokeLater(new Runnable() {
public void run() {
new TestViewerFrame().setVisible(true);

}
});

}
}
Code example 1 – Creating a viewer window

The easiest method to embed a jadice viewer into a component's hierarchy is
to use the class BasicJadicePanel. It combines beside a viewer an interacting
status bar, toolbars and a context menu and thus it offers a complete,
functional viewer representation.

For interested integrators the class BasicJadicePanel may be found as a source
code example in the jadice document platform distribution under

<distribution-directory\example-src\viewer

jadice document platform Version 4.2.x Page 47 of 93

D e v e l o p e r ' s g u i d e

jadice 4.2.

It is a very helpful possibility to access on the contained viewer instance, as
described in the following examples. For this reason the method
„getViewer()“ has been added.

Performing the class the following application window appears:

In order to be able to work with the viewer, a document must be loaded now.
This may happen in two different ways:

† by the user: by pressing the button „open“
A file selection appears. The user may now select an image file and display
it in the viewer.

† by the programme: by initiating a loading process. This will be explained in
detail in the following paragraph.

Instead of an instance of the BasicJadicePanel a viewer instance may also be -
analogous to the example above – directly embedded into a component's
hierarchy. However, in such a case it is up to the integrator to create toolbars,
status bars, menu and context structures himself and to embed them
accordingly. Ideas how toolbars or menus may be created progammatically are
offered in the source code of the class BasicJadicePanel which is provided in the
distribution in the directory example-src.

5.2. Loading process

5.2.1. Simple loading process

In oder to explain a simple, programme-directed loading process of an image
document available in the file system the class Test ViewerFrame is upgraded
with the method „loadAnImage(...)“.

public class TestViewerFrame extends JFrame{

jadice document platform Version 4.2.x Page 48 of 93

D e v e l o p e r ' s g u i d e

Chart 6 - Viewer Frame

jadice 4.2.

...
public static void main(String[] args) {
SwingUtilities.invokeLater(new Runnable() {
public void run() {
TestViewerFrame viewerFrame = new TestViewerFrame();
viewerFrame.setVisible(true);
viewerFrame.loadAnImage("resources\\Fax.tif");

}
});

 }
/**
 * Loads an image into embedded viewer
 * @param imageFileName file name of image to load
 */
 public void loadAnImage(String imageFileName){
 Loader loader = new Loader();
 getViewer().setDocument(loader.getDocument());

try {
 loader.loadDocument(new FileInputStream(

imageFileName),0);
} catch (FileNotFoundException e) {

 System.err.println("Image not found: "+imageFileName);
 e.printStackTrace();
} catch (IOException e) {

 System.err.println("Could not read image data: "
+imageFileName);

 e.printStackTrace();
}

 }
}
Code example 2 – Simple loading process

First a loader instance is created. The document which is later filled by the
loader is directly set in the viewer. The viewer updates the displaying
automatically as soon as the first page is loaded.

The simplest way to load a document completely is offered by the method
„loadDocument(InputStream, firstPage)“ of the loader. The parameters
consist of a data InputStream and the index of the first document target page
to be filled. By indicating „0“ as index of the target page the file is loaded at the
beginning of the document. The indexing of pages within the loader is 0-based.

At this point it should be mentioned that image files with jadice are only in rare
cases loaded by the local file system. As a rule jadice accesses on a document
management system and gets documents from there. Since the
„loadDocument()“ method of the loader expects only one InputStream, it is
free to choose where this stream gets its data from and it is left to the
integrating application to provide such a data stream.

5.2.2. Assemble documents

Jadice documents need not to exist of data of one source. The document model
(compare 2.4.1.The doc ument model) shows clearly that documents may
consist of different data sources. In this paragraph it is exemplified how pages
of different sources may be assembled to a virtual jadice document. Beyond

jadice document platform Version 4.2.x Page 49 of 93

D e v e l o p e r ' s g u i d e

jadice 4.2.

this pages may also obtain their page segments from different data sources,
this is specified in 5.2.3Layer.

To demonstrate it simply in this example the very same Single Page Tiff has
been linked together ten times in a row. Once the loading process has been
finished, the document thus contains 10 pages. Like that different image
documents, with one and more pages, in different formats, may be also linked
together.

public class MultipleTiffLoadSample {
 private static TestViewerFrame viewerFrame = null;
 public static void main(String[] args) throws Exception
{
SwingUtilities.invokeLater(new Runnable() {
public void run() {
TestViewerFrame viewerFrame = new TestViewerFrame();
viewerFrame.setVisible(true);

 // Ladevorgang asynchron starten
 Thread t = new Thread("Load 10 Tiffs in a row...") {
 public void run() {
 load10TiffsInRow();
 }
 };
 t.setPriority(Thread.MIN_PRIORITY);
 t.start();
}
});

 }
 /**
 * Loads 10 Tiffs in a row
 */
 private static void load10TiffsInRow() {

Loader loader = new Loader();
// set empty document in viewer

 viewerFrame.getViewer().setDocument(
loader.getDocument());

 // synchronous loading process
 loader.setSynchronousLoading(true);
 // LoadListener, only for displaying,

// when a raw document
 // has been loaded and added to the jadice document
 loader.addLoadListener(new LoadListener() {
 public void loadStateChanged(LoadEvent e) {
 if (e.getType() == LoadEvent.LOAD_COMPLETE)
 System.err.println(

"Document Fax.tif is loaded");
 }
 });
 for (int i = 0; i < 10; i++) {
 try {
 loader.loadDocument(

new FileInputStream("resources\\Fax.tif"),
 loader.getDocument().getPageCount());
 } catch (FileNotFoundException e) {
 e.printStackTrace();
 } catch (IOException e) {
 e.printStackTrace();
 }

jadice document platform Version 4.2.x Page 50 of 93

D e v e l o p e r ' s g u i d e

jadice 4.2.

 }
 }
}
Code example 3 Assemble documents

In this example as well the class TestViewerFrame is used for the viewer's
displaying, but not its „loadAnImage(...)“ method. The „loadAnImage(...)“
method passes at each call and for each raw data stream to be loaded a new
document to the viewer instance and thus it can't be used in this example.

In Code example 3 first a TestViewerFrame is created, made visible and a
multiple loading process is started. To avoid that the loading process blocks the
current thread, the method „load10TiffsInRow()“ is called asynchronously.
The asynchronous starting of the loading process is not necessarily needed, but
in certain contexts this procedure may be very useful in order to grant a
smooth programme flow and it is only taken in here for demonstrating
purposes.

In the method „load10TiffsInRow()“ first a loader instance is created.
Afterwards, like in the preceding example, the loader's document is set in the
embedded viewer for displaying. At this the „getViewer()“ method of the class
TestViewerFrame is used for the first time. By this method the test frame can
be flexibly used from the outside, a property which is often applied in the
following examples.

At this point it should be again and in particular pointed out, that a loader
instance may be used for any number of loading processes. These loading
processes fill the document that has been set to the loader. If no document has
been set, the loader creates automatically a new DocumentInstance. If
different documents should be loaded by a loader instance, the document to be
loaded may be changed by using the method „setDocument(Document)“.
Since the loader, if not set differently, works asynchronously, this should not be
done during a current loading process, though. Integrators are responsible for
changes of the document instance to be filled.

To keep the correct order loading processes of different image sources should
be synchronised, so that really the next image document is only loaded, when
the preceding has already been loaded and added to the document instance
which is to be loaded. For this purpose the loader is set on synchronous
processing by the method „setSynchronousLoading(true)“.

After that a LoadListener is registered on the loader which has no functional
meaning in this example and has only been added for exemplification. Each
time when one of the ten documents to be loaded has finished its loading
process the LoadListener issues a corresponding message on the console.
Please note that LoadListener instances have to be registered only once per
loading process. In the same way multiple LoadListeners may be registered in
parallel.

In the next step the actual loading process is performed. Since the loader
works synchronously, loading processes may be sequentially started by the aid
of a „for“-loop. Like already in the last example a data InputStream and a page
index are passed as parameters.

To make sure that a newly loaded raw document will be added at the end of
the jadice document which is to be loaded, the current page number of the
document is indicated as page index of the „loadDocument(...)“. Since the
pages are added synchronously to the document by the loader and the loader's
page indexing is 0-based, the requested page order is granted.

jadice document platform Version 4.2.x Page 51 of 93

D e v e l o p e r ' s g u i d e

jadice 4.2.

5.2.3. Layer

In the last paragraph pages of different sources were loaded and assembled to
a document.

Documents may not only consist of different pages from different sources, but
even pages as well may be composed of different layers. Compare also
2.4.1. The d oc ument model .

This paragraph describes an example how a page background (in this case a
fax preprint) and a textual content may be loaded in different page segments.

 /**
 * Loads data into two different layers
 */
 private static void doLayeredLoad(){
loader.setSynchronousLoading(true);
// create layers to load into
DocumentLayer backgroundLayer =
loader.getDocument().addLayer(

"background", DocumentLayer.BOTTOM);
DocumentLayer overlayLayer =
loader.getDocument().addLayer(

"overlay", DocumentLayer.ABOVE_BOTTOM);

// start loading
try {
loader.loadDocument(
new FileInputStream(
"resources\\levigoFaxPapier.afp"),
backgroundLayer,
0);

} catch (FileNotFoundException e) {
e.printStackTrace();
} catch (IOException e) {
e.printStackTrace();
}
try {
loader.loadDocument(
new FileInputStream(
"resources\\FaxContent.txt"),
overlayLayer,
0);

} catch (FileNotFoundException e1) {
e1.printStackTrace();
} catch (IOException e1) {
e1.printStackTrace();
}
}
Code example 4 Loading of a layer

First the loader is set again in a synchronous processing mode. This is in
technical regards not really necessary for the loading of page segments, but it
makes sure that first the page background is loaded and displayed before the
textual context is inserted. Normally the loading process should proceed so

jadice document platform Version 4.2.x Page 52 of 93

D e v e l o p e r ' s g u i d e

jadice 4.2.

quickly that the user does not even realise it, but with slow network
connections e.g. this displaying order is more suggestive.

In order to be able to load in different page segments, first these layers must
be created in the document. A layer thus exists for all pages of the document,
even if they possibly don't cover all layers with PageSegments. A layer is
defined by a unique name and is inserted at a particular vertical position of the
document levels. So e.g. an AnnotationPage segment should always lie on the
highest level on top of all page segments; in this example the text should be
displayed over the fax background. For this reason the layer „background“ is
created on the position DocumentLayer.BOTTOM and the layer „overlay“ on the
position DocumentLayer.ABOVE_BOTTOM.

Afterwards the loading processes are initiated. For this – like in the preceding
examples - a data InputStream and a page index are passed to the
„loadDocument(...)“ method. Additionally a layer is defined in which the
loaded data are positioned vertically as page segment in the page.

After the realisation the loaded page looks like the following:

If the „loadDocument()“ call for the „overlay“-layer of the textual fax content
is commented out, as expected only the page background appears.

See also the following chart.

jadice document platform Version 4.2.x Page 53 of 93

D e v e l o p e r ' s g u i d e

Chart 7 - Page segments loaded in layers

jadice 4.2.

5.2.4. SeekableInputStream

For an efficient and memory sparing processing of large documents the viewer
tries, if allowed by the image format, to read, to process and to cache
dynamically only document data necessary for the current page segment
instead of holding all image data completely in the memory.

Jadice uses for this procedure SeekableStreams. Example 5 makes it clear, how
it is tried to find a suitable SeekableInputStream.

public Document load(File aFile){
 Loader loader = new Loader();
 SeekableInputStream seekInputStream = null;
 try {
 seekInputStream =

new RandomAccessFileInputStream(aFile);
 } catch (Exception e) {
 try {
 seekInputStream = new FileCacheInputStream(
 new FileInputStream(aFile));

 } catch (Exception g) {
 seekInputStream =

new MemoryInputStream(
new FileInputStream(aFile));

 }
 }
 return loader.loadDocument(seekInputStream, 0);
}
Code example 5 Selection of a suitable data stream

The method „load(File)“ has to load a given file and to return it as a
document.

First it is tried to create a RandomAccessFileInputStream which makes it
possible to position within the file. This data stream type works on a document

jadice document platform Version 4.2.x Page 54 of 93

D e v e l o p e r ' s g u i d e

Chart 8 - Only background level loaded

jadice 4.2.

source - physically existing in a file system – in which a pointer is directly
positioned in the data source.

If this fails, it is tried to use a FileCacheInputStream. A FileCacheInputStream
buffers read data in a temporary file. So slow reading processes (e.g. due to a
bad network connection) must only be performed once and if required.
However, data which have been already read and buffered as a temporary file
are quickly available. In order to create a FileCacheInputStream the application
must at least have write permission in the set temporary directory.

As last alternative remains a MemoryInputStream which buffers read data in
the central memory. This is the fastest variant, since data are only accessed in
the central memory, but it may with very large data amounts enlarge
significantly the central memory requirement of the application.

It is left to the integration to choose depending on the environment of use and
the specific conditions of application the most pragmatic type of
SeekableInputStreams and to use them for loading processes. If choosing the
most appropriate SeekableInputStream is to be left to jadice, jadice offers two
possibilities as static methods of the class Loader:

③ Loader.prepareSeekableInputStream(InputStream)

Creates from the given Inputsteam a suitable Seekablestream and
returns this one as method return value.

③ Loader.prepareSeekableInputStream(InputStream, boolean)

Creates from the given Inputsteam a suitable Seekablestream and
returns this one as method return value.
The Boolean parameter defines, if a temporary file buffering is to be
taken into consideration when evaluating the most appropriate
SeekableInputStream.

5.2.5. ResourceLoader

ResourceLoader are used for AFP or MO:DCA documents which may have
embedded in the document not only internal (inline) but also external
resources. External resources are dynamically supplied during the document's
loading process with the aid of ResourceLoaders.

In this example we assume that different resources are found in the directory
„C:\afp\res“ and beyond this a resource directory „myResources“ with the
required resources is provided on „www.myServer.com“. All these resources
should always be available for all of the following loading processes.

public ResourceLoader getResourceLoader() {
ResourceFileLoader resLoader = new

ResourceFileLoader("C:\\afp\\res");

ResourceMultiLoader multiLoader =
new ResourceMultiLoader();

multiLoader.addLoader(
new ResourceUrlLoader(
"http:\\www.myServer.com\myResources"));

multiLoader.addLoader(resLoader);

jadice document platform Version 4.2.x Page 55 of 93

D e v e l o p e r ' s g u i d e

jadice 4.2.

return multiLoader;
}
Code example 6 A ResourceLoader out of different
ResourceLoaders

In order to be available for all loading processes, the creating ResourceLoader
must be registered directly on the loader. If the ResourceLoader was
registered on the document, it would be only available for the loading process
of this document, but not for loading processes into other documents.

Then the registration on the loader can be performed with the method
„setResourceLoader(...)“.

Example:

loader.setResourceLoader(getResourceLoader());

On the loader only one ResourceLoader may be registered at a time. However,
in this example two ResourceLoaders are required: One ResourceFileLoader
which provides all resources of the directory „C:\afp\res“ and a second one
which makes all resources on „www.myServer.com“ available in the resource
directory „myResources“. The solution is an instance of the class
ResourceMultiLoader which implements the interface ResourceLoader and thus
may work as a ResourceLoader, but it may also take in different
ResourceLoaders by the method „addLoader()“. If a resource is requested, all
registered ResourceLoaders in the ResourceMultiLoader are queried about this
resource and the first successful result is returned.

In Code example 6 first a ResourceFileLoader is created. Then a
ResourceUrlLoader is created. It may be directly instantiated by a list of one or
more URLs containing resources.

Afterwards the ResourceFileLoader as well as the ResourceUrlLoader are added
to an instance of the class ResourceMultiLoader.

5.2.6. Annotations

In the following paragraph it is exemplified how ImagePlus compatible
annotations may be loaded. FileNet and FileNet P8 annotations may be loaded
analogously. But instead of an instance of the class
ImagePlusAnnotationFormatInfo an instance of the class
FileNetAnnotationFormatInfo respectively FileNetP8AnnotationFormatInfo must
be passed to the loader's method „loadDocument(...)“. In order to keep it
concise at this point it is not dwelled on the loading process of the actual image
document, but only on the annotations.

 File file2Load = new File("myimage.tif");
 Loader loader = new Loader();
 // load document...

 int lastDot = file2Load.lastIndexOf(".");
 if (lastDot > 0) {
 // try to look for annotation file
 String annoFileName = file2Load.substring(

0, lastDot);

jadice document platform Version 4.2.x Page 56 of 93

D e v e l o p e r ' s g u i d e

jadice 4.2.

 // Default vi annotation extension: „.T_L“
 File annoFile = new File(annoFileName + ".T_L");
 // if file exists, do load the annotations
 if (annoFile.exists())
 loader.loadDocument(
 new FileInputStream(annoFile),
 new ImagePlusAnnotationFormatInfo(),
 0);
 }
Code example 7 – Load annotations

First it is tried to find a corresponding annotation file to the provided image file
„file2Load“. ImagePlus compatible annotation files usually have got the same
name like the image document and „.T_L“ as suffix. If such a file exists, it is
used for the loading of annotations. Here it should be pointed out that
annotation data are usually not provided as a file, but as a stream from an
archive or similar.

Format information describe the format in which a document is provided. If no
format information is given to the loader in the „loadDocument“ method, the
loader tries to define the format itself. Since ImagePlus annotations are
MO:DCA structures, it is necessary to load ImagePlus compatible annotations
always with ImagePlusAnnotationFormatInfo79. Otherwise these are mixed up
with MO:DCA data and are loaded accordingly as a document in place of
annotations.

Note:

Loading and saving of annotations must be performed explicitly by the
integrator and it is not done automatically by jadice when loading the main
document.

5.2.7. Bookmarks

Bookmarks are saved, loaded and administrated by the class
DocumentBookmarkHandler.

DocumentBookmarkHandler allows loading and saving of bookmarks as
Properties80.

Example 8 describes a loading process from a property file.

public void loadBookmarks(Document doc, String
 bmkFileName) {
try {
File fBookmarks = new File(bmkFileName);

if (fBookmarks.exists() && fBookmarks.canRead()) {
// create and load bookmark properties
Properties bookmarksProps = new Properties();
bookmarksProps.load(new FileInputStream(fBookmarks));

// load bookmarks into the BookmarkHandler
DocumentBookmarkHandler.getInstance().load(

79 com.levigo.jadice.formats.annoiplus.ImagePlusAnnotationFormatInfo
80 java.util.Properties

jadice document platform Version 4.2.x Page 57 of 93

D e v e l o p e r ' s g u i d e

!

jadice 4.2.

bookmarksProps,
doc,
doc.getName());

} else {
// reset BookmarksHandler state
DocumentBookmarkHandler.getInstance()
.removeBookmarksForDocument(doc);
}
} catch (Exception e) {
e.printStackTrace();
}
}
Code example 8 – Load bookmarks

First it is checked, if the indicated Bookmark Properties file is available and if it
may be accessed for reading. If so, an empty property object is created in
which the bookmark data are loaded in the next step. The filled properties
object is then made available to the DocumentBookmarkHandler. The
DocumentBookmarkHandler initialises JadiceBookmarks out of the given
properties which are then provided by the DokumentBookmarkHandler for
further use.

Properties objects may contain bookmark entries of any number of different
documents. To make sure that only the bookmarks belonging to the document
are loaded, an explicit bookmark identification of the
DocumentBookmarkHandler's loading method must be indicated additionally. In
this example simply the document's name has been used. But principally any
other character string may be used as identifier, it is only important that it is
the same which was used when saving the bookmarks.

With the aid of this identification bookmarks from different saving processes
and of different documents may be administrated in a properties object.

5.2.8. Gradation

Gradation data are processed by two different object types of the jadice
package: on the one hand by instances of the class GradationCurve and on the
other as AddOn in form of a GradationCurveControl instance.

For both object types processing gradation data the utility class
GradationCurveFileHandler supports the loading process from a file system.
This class is instantiated with a GradationCurve or a GradationCurveControl
which is to be filled with gradation points.

The class GradationCurveFileHandler offers different loading methods for this
which may be used according to requirements. A detailed listing is found in
4.23.2.GradationCurveFileHandler. In the following example the method
„openGradationCurveFromFile“ was used. This method first opens a file
selection dialogue which after having selected a gradation data file effects a
loading process into the passed GradationCurve or GradationCurveControl
object.

Alternatively gradation data may also be loaded from a provided data stream.
Compare the method „loadGradationCurveFromStream“ in Example 9 .

jadice document platform Version 4.2.x Page 58 of 93

D e v e l o p e r ' s g u i d e

jadice 4.2.

public void loadGradationCurve(GradationCurve aCurve){
new GradationCurveFileHandler(aCurve)
.openGradationCurveFromFile();

}
public void loadGradationCurveIntoGradPanel(

GradationCurveControl aCurveControl){
new GradationCurveFileHandler(aCurveControl)

.openGradationCurveFromFile();
}

public void loadGradationCurveFromStream(
GradationCurveaCurve, InputStream is){
new GradationCurveFileHandler(aCurve)
.openGradationCurveFromStream(is);

}

Code example 9 – Load gradation from local file system or
InputStream

If the gradation data are not available in the local file system, the class
GradationCurve offers additionally the possibility to insert data by a properties
object.

public GradationCurve loadGradationData(
String gradationIdentifier,
InputStream gradationDataStream) {
GradationCurve newCurve = new GradationCurve();
try {
// create and load gradation properties
Properties gradationProps = new Properties();
gradationProps.load(gradationDataStream);

// load gradation into the GradationCurve
newCurve.load(gradationProps,gradationIdentifier);

} catch (Exception e) {
e.printStackTrace();
}
return newCurve;
}

Code example 10– Load gradation from a data stream

Example 10 shows the loading process in an instance of the class
GradationCurve. For this purpose the method „loadGradationData(...)“ gets
a corresponding DataInputStream and a gradation identifier. This identifier
identifies uniquely the gradation data to be loaded and it should correspond to
the identifier used in the preceding loading processes of the gradation data. As
a result the method returns a new created GradationCurve initialised with the
data of the InputStream.

First a property object is created which loads the data of the provided data
stream. Then the GradationCurve is initialised with these properties und the
passed gradation identifier, before it is returned as a method result.

jadice document platform Version 4.2.x Page 59 of 93

D e v e l o p e r ' s g u i d e

jadice 4.2.

5.3. Saving
This paragraph is mainly about examples which describe in detail the saving
into a particular format or go into concrete parts of a document like
annotations. In the standard case (which is the saving of a simple, not
assembled document with possible annotations) the functionality of the class
4.27.DocumentSaver should be enough for integrators and developers. The
DocumentSaver supports the saving of all formats which may be displayed by
the viewer. Format conversion and document changes are not supported.

5.3.1. Document

Similar to format information which support loading processes of particular
formats, there are classes which support saving processes into particular
formats (FormatNameFile). See also 4.6.FormatInfo and FormatFile .

private void saveDocument(){
 TIFFFile tiffFile =
 new TIFFFile(getViewer().getDocument());
 try {
 tiffFile.save(new FileOutputStream("Myimage.tif"));
 } catch (FileNotFoundException e) {
 e.printStackTrace();
 } catch (IOException e) {
 e.printStackTrace();
 }
 saveAnnotations();
}

Code example 11 Save Tiff document

In the example a document that has been created of TIFF data is to be saved
into a file „myimage.tif“.

For this purpose first an instance of the class TIFFFile is created and the
document to be saved is passed to the constructor.

Then the TIFF-data of the document are saved by the method
„save(OutputStream)“. If the target format differs from the format of the
original document, an error occurs. Format conversions are not carried out.

The saving as well as the loading underlies the responsibiliy of the integrating
application. Compound documents from different formats must be saved
according to their configuration. For this all FormatNameFile classes provide
different „save(...)“ methods which allow a saving of particular pages and/or
layers.

5.3.2. Annotations

Like in the preceding paragraph for the saving of annotations a particular
format-specific saving class is used especially for annotations.

jadice document platform Version 4.2.x Page 60 of 93

D e v e l o p e r ' s g u i d e

jadice 4.2.

 private void saveAnnotations(){

 // similiar to anno load:
// ImagePlusAnnotationFormatInfo ->

 // use here ImagePlusAnnotationFile
 ImagePlusAnnotationFile annoFile =
 new ImagePlusAnnotationFile(

getViewer().getDocument());

 try {
 annoFile.save(

new FileOutputStream("MeinBild.T_L"));
 } catch (FileNotFoundException e) {
 e.printStackTrace();
 } catch (IOException e) {
 e.printStackTrace();
 }
 }
Code example 12– Save annotations

The example describes how annotations of a document may be stored in a file.

First an instance of this class is created. In order to get access on the
annotations to be loaded, the document with its annotations to be saved is
passed to ImagePlusAnnotationFile in the constructor. Finally a call of the
„save“-method saves the annotations in the passed OutputStream.

Note:

Loading and saving of annotations must be done explicitly and is not done
automatically when loading the document.

For a format-specific saving of annotation data the following classes may be
used:

† ImagePlusAnnotationFile (for IBM ImagePlus and IBM ContentManager
compatible annotations)

† FileNetAnnotationFile (for FileNet annotations)

† FileNetP8AnnotationFile (for FileNet P8 annotations)

5.3.3. Bookmarks

As already presented in paragraph 5.2.7.Bookmarks, the persistence of
bookmarks is provided by Properties objects and a unique identifier.

public void saveBookmarkData(Properties bmProperties,
Document doc, String documentBookmarkIdentifier) {

// get a reference to bookmark handler
DocumentBookmarkHandler bmHandler =
DocumentBookmarkHandler.getInstance();
// save bookmark data into the properties object
bmHandler

jadice document platform Version 4.2.x Page 61 of 93

D e v e l o p e r ' s g u i d e

!

jadice 4.2.

.saveBookmarksForDocument(bmProperties,doc,
 documentBookmarkIdentifier);

}

Code example 13– Save bookmarks

In the code example first a reference on the DocumentBookmarkHandler is
detected by the static method „getInstance()“.

In the next step the saving of bookmarks is effected by a call of the method
saveBookmarksForDocument. For being called this method expects the
following parameter:

③ A reference of the document the bookmarks of which are to be saved.

③ A Properties Object in which the bookmarks are to be saved.

③ A unique bookmark identification which allows at a later date to read
bookmarks out of a Properties Object to the corresponding document.

5.3.4. Gradation

In the following example gradation data set in the viewer are to be saved in a
given OutputStream with a provided identifier. This identifier serves for
identification within a new loading process.

public void saveGradationData(

String gradationIdentifier,
OutputStream gradationDataStream) {

GradationCurve curveToSave =
getViewer().getRenderContext()

 .getImageRenderSettings().getGradationCurve();
try {
// create a properties object to store gradation

 // data into it
Properties gradationProps = new Properties();

// save gradation data into properties object
curveToSave.save(gradationProps,gradationIdentifier);

// save properties object into output stream
gradationProps.store(

gradationDataStream,
 "Test Viewer Frame Gradation Data");
} catch (Exception e) {
e.printStackTrace();
}
}
Code example 14– Save gradation

The gradation curve used by the viewer is saved in the viewer's RenderContext
so that by the aid of the methods

† Viewer#getRenderContext() and

jadice document platform Version 4.2.x Page 62 of 93

D e v e l o p e r ' s g u i d e

jadice 4.2.

† RenderContext#getImageSettings() and

† ImageRenderSettings#getGradationCurve()

a reference to the gradation curve to be saved may be obtained.

In the next step a property object is created which is passed to the gradation
curve with a unique gradation identifier for the intake of gradation data.

After the gradation data have been stored in the properties object, the
properties instance saves itself in the passed OutputStream. The second
parameter of the method „store(...)“ serves as data-header which precedes
the saved gradation properties as a comment. Indicating a header is optional
and if no header is requested it may be indicated with „null“.

5.4. Actions-Commands-Context
A central aspect of the jadice document platform is to offer very easy
integration possibilities with a possibly small programming and adaptation
effort. This chapter demonstrates how easily jadice components may be
integrated and adapted in own applications by the aid of the jadice Integrator
API.

For a better understanding of the following paragraphs see also the chapters
3. The jadice Integrator API and 8.jadice Integrator API: Syntax description of
c onfiguration files .

5.4.1. Embedding of menus, toolbars, actions

As introducing example in this paragraph first a window is created which
contains a viewer instance, a corresponding toolbar and a menu bar. Menu bar
and toolbar are created by the aid of the jadice Integrator API.

public class CommandsTestFrame extends JFrame {

// parent context
private Context context = null;
// containing viewer
private Viewer viewer = null;

CommandsTestFrame() {
super("Commands Test Frame");
setDefaultCloseOperation(EXIT_ON_CLOSE);

viewer = new Viewer();
initContext();
initGui();
pack();
setVisible(true);
}
private void initContext() {
// ... see 5.4.1.1
}
private void initGui() {
getRootPane().setJMenuBar(getCommandsMenuBar());

JPanel contentPane = new JPanel(new BorderLayout());

jadice document platform Version 4.2.x Page 63 of 93

D e v e l o p e r ' s g u i d e

jadice 4.2.

contentPane.add(viewer, BorderLayout.CENTER);
contentPane.add(
getCommandsToolBar(), BorderLayout.NORTH);
setContentPane(contentPane);
}

private JToolBar getCommandsToolBar() {
// ... see 5.4.1.2
}
private JMenuBar getCommandsMenuBar() {
// ... see 5.4.1.2
}

public static void main(String[] args) {
new CommandsTestFrame();
}
}

Code example 15– Exemplified window

The methods „initContext()“, „getCommandsToolBar()“ and
„getCommandsMenuBar()“ are described in the following paragraphs.

5.4.1.1. Context

For the creation of CommandActions, no matter if these are the performable
part of a menu item or of a button, a context object is required. A context
reflects by means of the contained objects the current state of the associated
GUI-component and thus presents the basis for state and performability of
CommandActions. See also chapter 3.Die jadice Integrator API.

private void initContext() {
// Create a context instance with the RootPane as owner
// and the NO_CHILDREN as aggregation mode.
// NO_CHILDREN means that there are no other context
// objects in the context hierachy, whose context objects
// need to be aggregated on a context changed event
// which triggers a command action update.
context =
new Context(getRootPane(),Context.NO_CHILDREN);

// Add context objects, here just the embedded viewer
// instance
context.add(viewer);

// React to property changes of the viewer by correct
// enabling/disabling the commands/actions.
// Therefore trigger a context changed event whenever a
// property change of the viewer happened.
viewer.addPropertyChangeListener(
new PropertyChangeListener() {
public void propertyChange(PropertyChangeEvent evt) {
context.contextChanged();

}
});
}

jadice document platform Version 4.2.x Page 64 of 93

D e v e l o p e r ' s g u i d e

jadice 4.2.

Code example 16– Create context

Accordingly in the method „initContext()“ first a context object is created to
the constructor of which two parameters are passed, a Context Owner and an
aggregation mode.

In the following the parameters are described in detail:

† The window's RootPane as Context Owner

Each context instance has got an associated GUI element as Context
Owner. A Context Owner serves two aspects.

On the one hand it controls the state of the context object. If the
Context Owner is active as a GUI element, the context is also active. In
context hierarchies the context elements are according to the set
aggregation mode composed of the proper context elements and the
elements of no, all or the active child-contexts. So the contexts' activity
determines depending on the set aggregation mode the precise
composition of context elements and thus influences with context
changes the state (performable, not performable, performed, not
performed) of associated CommandActions.

On the other hand the Context Owner represents as GUI-element a
contained component's hierarchy. Context hierarchies are to be
composed in correlation to the component hierarchies of their Content
Owners.

† Context.NO_CHILDREN as context aggregation mode

The aggregation mode determines the composition of context elements
in context hierarchies. For this there are three modes which are offered
as static constants of the class Context:

† Context.ALL_CHILDREN – The context contains all elements of its
own as well as all elements of all child-contexts.

† Context.ACTIVE_CHILD – In this mode the context elements are
composed of the elements of the context object and the elements of
the active child-contexts.

† Context.NO_CHILDREN – This mode is appropriate, if no context
hierarchy is available or if all context objects and the corresponding
CommandActions act absolutely independently of other context
objects and their elements.

See also 3.2.3.Context and the jadice API documentation.

In the next step objects required by the CommandActions are added to the
context. All commands only need the viewer, thus only one viewer instance is
included in the context. Information which context objects are expected by
which jadice commands for performance are provided in the jadice API
documentation. With the following methods further context objects might be
created at this point and placed into a hierarchy.

† Context#addToParentsContext()

† Context#addChildContext(Context)

† Context#removeFromParentsContext()

† Context#removeChildContext(Context)

jadice document platform Version 4.2.x Page 65 of 93

D e v e l o p e r ' s g u i d e

jadice 4.2.

For this simple example, however, no context hierarchy is required.

In order to translate changes within the viewer, e.g. that a page of a document
has been loaded and is diplayed, into updating events of the CommandActions,
a PropertyChangeListener which transforms PropertyChangeEvents in
ContextChangedEvent81 is added to the viewer. This mechanism is a current
method to make sure that viewer specific commands in their state always blend
well with the viewer's state.

5.4.1.2. Embedding

After a context object has been created in the last paragraph, in the method
„initGUI()“ the graphic user interface of the CommandsTestFrame is
assembled.

private JToolBar getCommandsToolBar() {
JToolBar aToolBar =
DefaultMenuComponentFactory
.getInstance(
"/com/levigo/jadice/resources/properties/“+
“menucomponents.properties")
.getToolbar("jadiceToolbar", context);

aToolBar.setFloatable(false);

return aToolBar;
}
private JMenuBar getCommandsMenuBar() {
JMenuBar aMenuBar = new JMenuBar();

JMenu menu =
DefaultMenuComponentFactory
.getInstance(
"/com/levigo/jadice/resources/properties/“+
“menucomponents.properties")
.getMenu("file", context);

aMenuBar.add(menu);

return aMenuBar;
}
Code example 17– References to menus and toolbars

Toolbar and menu structures are defined by the configuration
menucomponents.properties. For more detailed information see 3.3.The
Configuration files and 8.jadice Integrator API: Syntax description of the
configuration files.

A jadice toolbar and a file menu were defined in this file and are referenced in
this example for creation.

A reference on a defined structure is created by the class
DefaultMenuComponentFactory82. The instance corresponding to a
configuration is obtained by the method
„getInstance(ConfigurationName)“ which creates the required structure

81 com.levigo.swing.action.ContextChangedEvent
82 com.levigo.util.swing.action.DefaultMenuComponentFactory

jadice document platform Version 4.2.x Page 66 of 93

D e v e l o p e r ' s g u i d e

jadice 4.2.

according to method call and definition. For this the following methods are
offered:

† getMenu(MenuName, Context)

creates a menu defined by the name „MenuName“, the second
parameter is the context required for the creation of CommandActions.

† getContextMenu(MenuName, Context)

creates a context menu defined by the name „MenuName“, the second
parameter is the context required for the creation of CommandActions.

† getToolbar(ToolbarName, Context)

creates a menu defined by the name „ToolbarName“, the second
parameter is the context required for the creation of CommandActions.

In order to use a different configuration, the required name is passed to the
method „getInstance(...)“.

Take note that structures may be defined as qualified or unqualified. With an
unqualified definition any structure may be created, e.g. menu or toolbar.
Otherwise only the structure which has been indicated in the configuration can
be created. Compare also 8.jadice Integrator API: Syntax description of
configuration files.

If no structure, but only a reference to a certain CommandAction is required,
this may be made possible by the following call.

Example:

DefaultActionFactory
.getInstance(
"/com/levigo/jadice/resources/properties/“+
“actions.properties")
.getAction(context,"OpenDocument")

As descendant of AbstractAction83 each CommandAction may be bound as a
performable element to appropriate components e.g. to a button or a menu
item.

5.4.2. Adaptation of Actions

5.4.2.1. Properties

Under certain circumstances it may be required to change the properties of a
CommandAction, for example a change of the tooltip or of the menu text.

Part of the file menu is a command called „OpenDocument“ which opens local
image documents and loads them in the viewer. If you want, for example, that
the menu entry is made out to „Open file“ instead of „Open“ only, change the
actions.properties configuration respectively the localised variant
actions_de.properties configuration as follows.

Example:

#actions.properties
...
OpenDocument.ShortDescription = open
...

83 javax.swing.AbstractAction

jadice document platform Version 4.2.x Page 67 of 93

D e v e l o p e r ' s g u i d e

jadice 4.2.

... change to
OpenDocument.ShortDescription = open file
...

A precise description which properties are changeable and in which way they
may be adapted is provided in chapter 8.jadice Integrator API: Syntax
description of the c onfiguration files .

Note:

The configuration details are read and evaluated once when starting the
viewer. Thus changes on configuration files take effect only after the viewer's
restart.

Note:

Bear in mind that the configuration files are provided in internationalised
variants. In order to avoid inconsistencies configuration changes should always
be done in all variants.

5.4.2.2. Adapting the menu or toolbar structure

In order to define own menu or toolbar structures or to change existing
structures the configuration menucomponents.properties respectively the
localised variant menucomponents_de.properties must be adapted.

An example: The viewer's context menu may be thus restricted, that it now
contains the product information only.

For this the definition of the context menu is thus shortened that it now
contains only the CommandAction for the displaying of the product information.

Example:

#menucomponents.properties
...
mainContextMenu.actions.contextmenu=ProductInfo
...

A precise description which properties are changeable and in which way they
may be adapted may be found in paragraph 8.jadice Integrator API: Syntax
description of the c onfiguration files .

Note:

The configuration details are read and evaluated once when starting the
viewer. Thus changes on configuration files take effect only after the viewer's
restart.

Note:

Bear in mind that the configuration files are provided in internationalised
variants. In order to avoid inconsistencies configuration changes should always
be done in all variants.

jadice document platform Version 4.2.x Page 68 of 93

D e v e l o p e r ' s g u i d e

!

!

jadice 4.2.

5.4.3. Own commands

If the functionality of the provided commands does not cover the needs of the
integrating application, own commands may be embedded simply and with little
effort.

As an example a command which opens a local image document and loads it
into the viewer is created in this chapter. In a further step this command is
embedded in the file menu of the CommandsTestFrame.

package my.tests.commands;

/**
 * This command needs a viewer instance to load documents
 * into the context objects.
 **/
public class ADocumentOpener extends AbstractCommand {
protected void doExecute(Collection args) {
// get access to viewer instance
Viewer viewer = (Viewer) getClassFromArguments(
args, Viewer.class);

if (viewer != null){
// use FileOpener to load an image
new FileOpener(viewer).openDocumentFromFile();

 }
}

/**
 * Is executed whenever an action is executed. Its return
 * value is used to decide, if an action will be executed
 * or aborted. Could show a message, if it fails.
 * @see AbstractCommand#checkDeeply(Collection)
 */
public boolean checkDeeply(Collection args) {
// checks, if a viewer instance is available
return isArgumentValid(
AbstractCommand.ONE, Viewer.class, args);

}
/**
 * Is executed whenever the context changes. Its return

 * value is used to decide, if an action gets enabled or
 * disabled.
 * @see AbstractCommand#checkQuickly(Collection)
 */
public boolean checkQuickly(Collection args) {
// checks, if a viewer instance is available
return isArgumentValid(
AbstractCommand.ONE, Viewer.class, args);

}
}

Code example 18– Create a command

The abstract basis class of all commands is the class AbstractCommand84. It
requires for extension the realisation of three methods:

84 com.levigo.util.swing.action.AbstractCommand

jadice document platform Version 4.2.x Page 69 of 93

D e v e l o p e r ' s g u i d e

jadice 4.2.

† doExecute(Collection)

This method is called in order to perform the command. The parameter
contains the available context elements.

† checkQuickly(Collection)

This method is called, when the context has changed. The return value
determines the command's state (active, not active). Since this method is
called very often in order to always have a correct status (enabled,
disabled), complex tests should not be done within this method.

† checkDeeply(Collection)

This method is called only before the command is performed. Here more
complex tests may also be done. The return value determines, if the
command is finally performed or not.

In order to perform the ADocumentOpener command a viewer instance in
which the document is to be loaded is necessary as context element. The
methods „checkQuickly(...)“ and „checkDeeply(...)“ use for the checking of
this precondition the method „isArgumentValid(...)“.

This and other useful utility methods of the class AbstractCommand are
described in the following:

† isArgumentValid(CountCondition,Class,Collection)

Checks, if objects of the indicated class are provided according the
CountCondition in the indicated context objects. The different
CountConditions are described in the jadice API documentation.

† getClassFromArguments(Collection,Class)

Detects an object of the indicated class from the given context objects.

† getClassesFromArguments(Collection,Class)

Detects all objects of the indicated class from the given context objects

The method „doExecute(...)“ first detects the viewer instance in which a
document is to be loaded. In the next step it uses the class FileOpener85 to
select an image file and to have it loaded in the viewer. More information about
the class FileOpener are in chapter 4.26.FileOpener or in the jadice API
documentation.

Upon completion of the ADocumentOpener command it must be registered for
embedding in the configuration files. For this a mapping is defined in the
commands.properties between a unique command name, e.g. ADocOpener,
and the realisation (my.tests.commands.ADocumentOpener).

Example:

#commands.properties
...
ADocOpener=my.tests.commands.ADocumentOpener
...

Take care to indicate the class name correctly, since commands within the
jadice Integrator API are instantiated by reflection.

85 com.levigo.jadice.util.FileOpener

jadice document platform Version 4.2.x Page 70 of 93

D e v e l o p e r ' s g u i d e

jadice 4.2.

In the next step a CommandAction is defined which is to be embedded later in
the file menu of the CommandsTestFrame. For this purpose the configuration
actions.properties is extended by the following lines.

Example:

#actions.properties
...
MyOpener.commands = ADocOpener
MyOpener.ShortDescription = Mein Opener
MyOpener.LongDescription = Mein toller Opener
MyOpener.SmallIcon = defaulticons.TB_OPEN
...

In the first line it is indicated which commands should be effected when
performing the CommandAction MyOpener. In doing so the name defined in the
file commands.properties is used. The next line indicates the text which e.g.
would appear in the menu or on a button. LongDescription corresponds to
Tooltip text and SmallIcon defines the icon to be used. More details to possible
specifications and syntax are in 8.jadice Integrator API: Syntax description of
the c onfiguration files .

In order to define finally MyOpener as part of the file menu, the configuration
menucomponents.properties is adapted as follows:

Example:

#menucomponents.properties
...
file.actions= MyOpener, CloseDocument
file.name=Datei
...

The first line says that the file menu consists of MyOpener and the
CommandAction CloseDocument. The second line has not been changed and
indicates the menu's name.

All in all it may be said that registrating a new command in the configuration
files is done in three steps.

† Step 1 – Commands.properties

Defining the new command's unique name for the use in further
configuration files, connected with the indication of the realising class.

† Step 2 – Action.properties

Defining of properties of the corresponding CommandAction, like for
example tooltip text or icon.

† Step 3 – menucomponents.properties

Creating structures like menu, submenu or toolbar structures.

Chart 9 shows the newly created command embedded in the file menu of the
CommandsTestFrame.

jadice document platform Version 4.2.x Page 71 of 93

D e v e l o p e r ' s g u i d e

jadice 4.2.

Note:

The configuration details are read and evaluated once when starting the
viewer. Thus changes on configuration files take effect only after the viewer's
restart.

Note

Bear in mind that the configuration files are provided in internationalised
variants. In order to avoid inconsistencies configuration changes should always
be done in all variants.

5.5. Printing

5.5.1. Simple printing

PrinterJava2 is the central class for the printing of documents out of jadice. A
simple example is the method „simplePrint()“ which extends the class
TestViewerFrame.

public void simplePrint() {
PrinterJava2 printer = new PrinterJava2();

// what to print
printer.setDocument(getViewer().getDocument());
// how to print
printer.setRenderContext(getViewer().getRenderContext());
// or
//printer.setRenderContext(new RenderContext());

// ...and go on
printer.print();
}
Code example 19 – Simple printing

jadice document platform Version 4.2.x Page 72 of 93

D e v e l o p e r ' s g u i d e

!

Chart 9 - Embed new command

jadice 4.2.

First an instance of the class PrinterJava2 is created by the default constructor.
Alternatively a constructor with a parameterised PrinterJob may also be used,
in case the integrating application wants to use an adapted PrinterJob.

Necessary printing information are a document, the pages to be printed and a
RenderContext with details for the displaying on a printing device.

For this purpose the method „simplePrint()“ passes the document set in the
viewer as well as the viewer's RenderContext to the PrinterJava2 instance. With
that the viewer's render settings are taken over for printing. Alternatively a
RenderContext adapted especially for printing may be set. An example to this is
in 5.5.3Adaptation of the RenderContext .

In the next step the printing process is started. If no other specifications are
set by the user in an eventually opened printing dialogue, all pages of the
document are printed. Whether a printing or page format dialogue is opened,
depends on the set configuration or which specifications have been given by
the calling of corresponding methods of the class PrinterJava2. See also the
following paragraph 7. Configuration and settings .

5.5.2. Settings

The class PrinterJava2 allows some optional settings which are specified in the
following. All default-settings for printing are described in chapter
7. Configuration and settings .

PrinterJava2 printer = new PrinterJava2();

// what to print
 printer.setDocument(myViewer.getDocument());

// how to print
 printer.setRenderContext(myViewer.getRenderContext());

// optional...
// show page format Dialog

 printer.setShowPageDialog(true);
// or setPageFormat(PageFormat)
// show printer Dialog

 printer.setShowPrintDialog(true);
// or setPageSelection(int[])
// enlarge pages to paper size (if they are smaller than
// the paper)
 printer.setEnlargePageToPaper(true);

// shrink pages to paper size (if they are larger than the
// paper)
 printer.setShrinkPageToPaper(true);

// rotate pages to fit into page format
 printer.setOptimizeRotation(true);

// print asynchronously
 printer.setAsynchronousPrinting(true);

// and go on...
 printer.print();

Code example 20– Settings for printing

jadice document platform Version 4.2.x Page 73 of 93

D e v e l o p e r ' s g u i d e

jadice 4.2.

A page format may be set directly with the method
„setPageFormat(PageFormat)“ or may be defined by the user in a page
format dialogue. The display of a page format dialogue is controled by the
method „setShowPageDialog(boolean)“. If neither of the two possibilities is
used by the integrating application, the page format set in the configuration is
used.

It is similar with the required page selection. If only particular pages are to be
printed, this may be directly specified by the method
„setPageSelection(int[])“. It must be noted that the pagination is, like also
in the document or in the loader, zero-based. Alternatively the user may specify
the required pages in a printing dialogue which may be displayed by the
method „setShowPrinterDialog(boolean)“. Further the target printer may
be defined in this dialogue. As a standard PrinterJava2 prints on the system's
default-printer. Take also note of the settings for displaying the printer dialogue
in the configuration.

For better printing results the pages to be printed may be optimally adapted in
the printable range. For this purpose the following methods are available:

† setEnlargePageToPaper(boolean)

Enlarge small pages optimally into printing range.

† setShrinkPageToPaper(boolean)

Minimize large pages optimally into printing range.

† setOptimizeRotation(boolean)

Rotate pages optimally in printing range.

Whether the printing process is to be performed asynchronously or
synchronously may be defined by the method
„setAsynchronousPrinting(boolean)“. The default setting is asynchronous.

5.5.3. Adaptation of RenderContext

In general the viewer's RenderContext may be used for printing, but also an
instance adapted by the integrator is possible. For example by indicating a
gradation curve for bi-level formats or AnnotationsRenderingHints for the
displaying or hiding of annotations.

Changes on the gradation curve of the print-RenderContext are effected by a
corresponding setter-method of the RenderContext.

In the following example the RenderContext is thus to be adapted that,
independent of the annotations displayed in the viewer, the printout shows only
the document without annotations.

For this an adapted RenderContext which is created by the method
„getNoAnnotationsVisibleRenderContext()“ may be passed to an instance
of the class PrinterJava2.

 public RenderContext
getNoAnnotationsVisibleRenderContext() {

RenderContext rc =

jadice document platform Version 4.2.x Page 74 of 93

D e v e l o p e r ' s g u i d e

jadice 4.2.

(RenderContext)getViewer().getRenderContext().clone();
AnnotationRenderSettings annoRenderSettings = rc
.getAnnotationRenderSettings();

annoRenderSettings.setAnnotationRenderingEnabled(false);

return rc;
}

Code example 21– Adaptation of RenderContext

First the viewer's RenderContext is cloned, so that the changes do not influence
the viewer's displaying.

The viewer supports two methods in order to change the visibility of
annotations. On the one hand all annotations can be hid/shown, on the other
hand all annotations of a particular type can be switched off/on.

For this the class AnnotationRenderSettings86 is used which is contained as a
ProcessingSetting87 in the class RenderContext. A RenderContext maintains
different ProcessingSettings which cover each particular sorts of rendering
properties. AnnotationRenderSettings define the visibility of annotations or just
of particular annotation types.

The visibility of annotations is set in the example above by the method
„setAnnotationRenderingEnabled (boolean)“.

Please note that some details of the RenderContext are ignored for printing,
since they are unchangeably predetermined by the output device. This refers to
zoom, rotation and similar.

86 com.levigo.jadice.annotation.AnnotationRenderSettings
87 com.levigo.jadice.docs.ProcessingSettings

jadice document platform Version 4.2.x Page 75 of 93

D e v e l o p e r ' s g u i d e

jadice 4.2.

6. Logging

6.1. jadice® Logging Framework Facade
At the initial release of the jadice® document platform version 4.1 a new
logging framework facade has been introduced.

Up to now, i.e. in all jadice versions before 4.1.x, in order to get jadice specific
messages the interface LogAdapter88 had to be implemented in existing logging
systems of the target application and it had to be introduced to the jadice
Logging mechanism.

With the new jadice Logging Facade this requirement has been simplified
essentially. The new framework allows a straight forward integration of the
most popular and wide-spread logging systems and frameworks, like Log4J,
SLF4J and via SLF4J JDK 1.4 Logging, Logback, JCL, x4Juli and many more. If
you already use one of the frameworks mentioned, the output of jadice
messages in one of these logging systems is often only a simple classpath
modification.

If no particular logging delegation, i.e. a particular logging framework, is
defined and provided by the classpath, a simple default logging will be used.
This simple logging will log any (non-debug) messages onto System.out.

This simple default logger, which is provided as fallback, simplifies the
developing phase. The desired target logging system is not needed any longer
at compile time, only at run time the corresponding framework must be
available in the classpath. Even if it is not strictly necessary, the target logging
system may still be integrated at compile time. Also during the developing
phase a different logging system may be used as in the final application.

6.2. First steps
Using jadice Logging Framework Facade is very easy. First it has to be sorted
out which target logging system is to be used.

The distribution of the jadice document platform provides two implementations
of Logging Delegates for this. If Log4J is to be used, add the corresponding
Log4J implementation to the application's classpath. For using a different
Logging Framework instead take its corresponding SLF4J implementation into
the classpath.

A detailed description where the desired implementation of the Logging
Delegate may be found in the distribution, if and which further steps are
necessary now, is described in the following paragraphs.

Both Logging Delegates contained in the distribution do not need any further
specific configuration. An adaptation of the target logging system's behaviour,
e.g. of the log level or similar, may be directed by the configuration possibilities
of the respective target logging system.

6.2.1. Log4J

The implementation of the Logging Delegate for Log4J corresponds to the
following naming convention:

88 com.levigo.util.log.LogAdapter

jadice document platform Version 4.2.x Page 76 of 93

D e v e l o p e r ' s g u i d e

jadice 4.2.

③ logging-log4j-<version>.jar

In the distribution you may find the corresponding Log4J delegate, each fitting
to the jadice modules being used, under the following directory structure:

③ lib-jdk15/logging

③ lib-all-in-one/jdk15/logging

Please insert the corresponding Log4J Delegate into the application's classpath.
If a log4j configuration is already available on the classpath, no further
configuration is needed.

For details about the configuration please see the log4j homepage and the
log4j manual. The jadice® document platform itself does not rely on a specific
configuration and does not make any settings on the target logging system.

6.2.2. SLF4J

The naming convention of SLF4J's logging delegate corresponds to the
following pattern:

③ logging-slf4j-<version>.jar

Like for Log4J you will find the corresponding SLF4J delegate, each fitting to
the jadice modules being used, under the following directory structure:

③ lib-jdk15/logging

③ lib-all-in-one/jdk15/logging

Please include the corresponding SLF4J delegate into the application's
classpath. Additionally the slf4j-api-<version>.jar and a logging
implementation is needed. For details about slf4j and supported types of
logging delegates and implementations see the SLF4J homepage or SLF4J
Manual, please.

6.3. Possible errors
If errors occur (loading of framework facade impossible, etc.), you will find
detailed help regarding the error reports in the current distribution of the HTML
documentation (documentation.html) which is provided in the distribution of
the jadice document platform.

jadice document platform Version 4.2.x Page 77 of 93

D e v e l o p e r ' s g u i d e

jadice 4.2.

7. Configuration and settings

In jadice document platform licence and configuration data are separated. The
configuration file of the jadice package is called „Jadice.properties“ and it is
located in the default package of the jadice document or the jadice All-in-one
Jar. It contains specific settings – as for example:

† settings of the viewer's performance

† settings of certain AddOns' performance

† operating system specific settings

† print settings

† settings for external AFP/MO:DCA resources

† cache size

† lifetime of temp. files

etc.

It will be dwelt on the single parameters in the course of this chapter.

The configuration details are read and evaluated once when starting jadice.
Thus changes on the configuration file take effect only after jadice's restart.
jadice looks first in its working directory for the configuration. If it does not find
it there, it is searched for in the class path. In the case of applets it is - for
security reasons - only searched in the class path.

The configuration file should always remain in the default package, own
adaptations may be done directly in this file or in a copy in the working
directory or class path. However, it is advisable to make own adaptations only
in a copy in order to be able to fall back to the default settings.

Integrators get access on the configuration's details by the class
JadicePreferenceHolder89.

Example:

JadicePreferenceHolder.getInstance()
.getPreferenceStoreByName(JadicePreferenceHolder.JADICE_C
ONFIGURATION)

This call returns an object of the class PreferenceStore90 containing the loaded
configuration data. A PreferenceStore resembles a properties object, but it
allows qualified and type-safe access on the configuration settings.

The jadice family administrates properties and settings in PreferenceStores.
The class PreferenceStore is an interface which, similar to the class Properties91,
administrates access on data by key-value pairs. The advantage of
PreferenceStores is the encapsulated access on the contained data. Being an
interface own implementations may be registered which allow to use data from
any sources, e.g. from a database, a file-system, the intra-/extranet or similar.

It is optional to integrators to have own implementations administrated by the
JadicePreferenceHolder. Take further details from the jadice API
documentation, particularly in regard of the classes PreferenceStore,
JadicePreferenceHolder, PreferenceStoreHolder and PropertiesPreferenceStore.

89 com.levigo.jadice.util.JadicePreferenceHolder
90 com.levigo.util.preferences.PreferenceStore
91 java.util.Properties

jadice document platform Version 4.2.x Page 78 of 93

D e v e l o p e r ' s g u i d e

jadice 4.2.

7.1. The most important settings in detail

Option Purpose

Printing – Initialisation of the printer class
jadice.viewer.show-print-dialog=true Is a printing dialogue to be displayed?

jadice.viewer.show-pageformat-dialog=true Is a page format dialogue to be
displayed?

jadice.viewer.printer-page-format-enabled=true Is a default page format to be set?

jadice.viewer.printer-page-format-size-x=210
jadice.viewer.printer-page-format-size-y=297
jadice.viewer.printer-page-format-border-x-left=10
jadice.viewer.printer-page-format-border-x-right=10
jadice.viewer.printer-page-format-border-y-top=10
jadice.viewer.printer-page-format-border-y-bottom=10
jadice.viewer.printer-page-format-orientation=1

Definition of a default page format, it
is only used, if the use of a default
page format is activated, i.e. the
property
jadice.viewer.printer-page-format-
enabled
=true.
Size information in mm.
Page format: 0 = landscape; 1 =
portrait

Default Print Commands
jadice.viewer.printer.commands.DefaultPrintMode=PrintAll Determines the default printing mode

of the jadice printing commands. Three
modes are available:

˜ PrintAll - document and annotations
are printed.

˜ PrintOnlyDocument – Only the
document is printed.

˜ PrintOnlyAnnotations – Only the
annotations are printed.

Default value: PrintAll

jadice.viewer.printer.commands.DefaultPrintAdjusting=FitPrint Defines when using the jadice printing
commands how documents are
adapted (scaled) in the printable
range.
The following values are possible:
˜ OrigSizePrint – Prints the document

in original size.
˜ ShrinkPrint – Adapts the document

into printable range by shrinking.
˜ EnlargePrint – Adapts the document

into printable range by enlarging.
˜ FitPrint – Adapts the document

always into the printable range, i.e.
according to page size the
displaying of the document is
zoomed in or out.

Default value: FitPrint

jadice document platform Version 4.2.x Page 79 of 93

D e v e l o p e r ' s g u i d e

jadice 4.2.

Option Purpose

Target system specific adaptations

jadice.viewer.printjobname.maxlength=40
Under windows it may happen that
print jobs with a too long print job
name are not accepted and cancelled
without further error warning.
This setting defines the maximum
length of print job names which are
initiated out of the jadice package.
Possible values: positive whole
numbers greater than 0.
If an invalid value is given or this
setting is commented out, no limitation
of the print job name is done.

jadice.viewer.printer-transparent-fix=auto Depending on the graphics card, the
monitor setting or the print driver
printing problems may occur with
transparent image areas or image
elements. In the enabled state a
workaround is activated which avoids
this problem, but results in a bigger
printing output.
Possible values: true, false, auto
Default value: auto

Hover Lens
jadice.hover-lens.use-click-scaling=true Setting, if the lens's enlargement

factor is to be changeable by
mouseclicks.
Possible values: true, false
Default value: true

jadice.hover-lens.default-scale=150 Initial zoom, lens's value as
percentage.
Possible values: Whole numbers
greater than 0.
Default value: 150, corresponds 150%

jadice.hover-lens.click-scale-step=25 Zoom step as percentage, in which the
lens's enlargement factor changes on
mouseclick (only important, if
jadice.hover-lens.use-click-scaling
=true).
Possible values: Whole numbers
greater than 0.
Default value: 25, corresponds 25%

jadice.hover-lens.shape=1 Shape of hovering lens.
Possible values:
1 - rectangle
2 – round
Default value: 2, corresponds round.
Note: integrators may define any
shape for the lens by API, however,
using the configuration file only these

jadice document platform Version 4.2.x Page 80 of 93

D e v e l o p e r ' s g u i d e

jadice 4.2.

Option Purpose
two shapes are offered.

jadice.hover-lens.size.width=150
jadice.hover-lens.size.heigth=150

Size of hovering lens in pixel.
Possible value: Whole numbers greater
than 0.
Default value:
Width: 150
Height: 150

jadice.hover-lens.autoscroll.mode=true Setting, whether the lens initiates an
autoscroll behaviour as soon as the
mouse leaves the document area.
Possible values: true, false
Default value: true

Page Sorter – minimised displaying
jadice.sorter.show-page-numbers=false Defines, if the page sorter shows page

numbers.
Possible values: true, false
Default value: false

jadice.sorter.single-click-navigates=false Setting, if by single clicking in the page
sorter a page number change is to be
effected in the viewer or not.

Possible values:
˜ true page navigation is effected by

single clicking on a page in the
page sorter.

˜ false A single click on a page in the
sorter selects this very page, a
double click effects a viewer's turn
over on this page.

Default value: false

Zoom Policy
jadice.viewer.apply.zoom-policy.resize=true Setting, if the zoom policy is to be

applied even with size changes of the
viewer.
Note:
˜ Zoom policy behaviour has always

got minor priority than user
settings. I.e., if the user himself
changes the zoom setting, the
zoom policy is ignored.

˜ Is only supported in connection
with zoom policy „fit“, „fit width“,
„fit height“.

Possible values: true, false.
Default value: false.

jadice.viewer.zoom-policy=2 Zoom setting for reloaded documents.
Possible values:
1 – Keeps the zoom value.

jadice document platform Version 4.2.x Page 81 of 93

D e v e l o p e r ' s g u i d e

jadice 4.2.

Option Purpose
2 - „fit“-mode, adapts document into
viewer.
4 - „fit width“-mode, adapts document
horizontally into viewer.
8 - „fit height“-mode, adapts document
vertically into viewer.
16 - "100%" mode, displays the
document in its original size.
32 - "page-fit" mode, adapts each
page into viewer, unless the user has
not defined any other pages or any
other document zoom value.
64 – "page-fit width" mode, adapts
each page horizontally into viewer,
unless the user has not defined any
other pages or any other document
zoom.
128 – "page-fit height" mode, adapts
each page vertically into viewer, unless
the user has not defined any other
pages or any other document zoom.
Default value: 1

Afp-specific
jadice.viewer.afp-resource-extension=ovl;300 Registrating of special file extensions

for external Afp resources.

jadice.viewer.afp-resource-path=d:\\afp_res\\ Registrating of a particular Afp
resource directory.

Temporary files (-> FileCacheInputStream)

jadice.viewer.delete-overaged-tmps = TRUE Automatical removing of remaining
temporary files.

jadice.viewer.overaged-tmps-lifetime=0 Number of days during which the
temp. files must not be deleted.
Default value: system temp. directory

jadice.viewer.tmps-path=c:/temp Path for temp. files

Annotations

jadice.viewer.annotation.type=vi Indicates which kinds of annotations
are processed. The annotation type
defines the structure of the
annotation toolbar and the properties
of the annotation editors.
vi = Visual Info compatible
annotations;
fn = FileNet compatible annotations
fnp8 = FileNet P8 compatible
annotations
Default value: vi

jadice.viewer.annotation.creation.mode=0 Indicates how the tools for the
creation of annotations behave.

jadice document platform Version 4.2.x Page 82 of 93

D e v e l o p e r ' s g u i d e

jadice 4.2.

Option Purpose
Possible values:
(0) nonpermanent mode = The tool is
automatically deselected after an
annotation has been created;
(1) permanent mode = If a tool is
selected, it remains selected as long
as the user deselects it;
(2) both = If the tool has been
selected by a single mouseclick, the
behaviour corresponds to the
„nonpermanent“ mode, with
doubleclicking to the „permanent“
mode.
Default value: 0

jadice document platform Version 4.2.x Page 83 of 93

D e v e l o p e r ' s g u i d e

jadice 4.2.

8. jadice Integrator API: Syntax description of
the configuration files

The configuration files of the jadice document platform contained in the
distribution package may be found under com.levigo.jadice.properties.* or
com.levigo.jadice.graphics.*. They are described in detail in the following
paragraphs.

Note:

For the creation of an own configuration take into account that the
configuration files contain references on corresponding configurations. These
references must be adapted accordingly.

If own configuration are not to be created, it is advised to copy the jadice
configuration files and to place them in the class path ahead of the jadice
document platform modules. So changes which have been done are
recognised, but the original configuration remains untouched.

Note:

Bear in mind that the configuration files are provided in internationalised
variants. In order to avoid inconsistencies configuration changes should always
be done in all variants, at least, however, in the variant corresponding to the
current locale.

8.1. The file „commands.properties“
This configuration creates a mapping between a unique command name which
is used as reference in other configurations and its realisation.

In general the syntax may be provided as follows:

Option Purpose

CommandName=CommandPfad.CommandKlassenName The command identifier is a freely
selectable, but unique name which is used
in other configurations as reference.
The specification of the command
realisation consists of its path and class
name. Pay attention to case sensitivity here,
since commands are created by reflection.

Example:

MyTestCommand1=test.myTests.AllTestClasses$ATestCommand
or
MyTestCommand2=test.myTests.ATestCommandClass

In the first line a command is described which is called MyTestCommand1
and which has been realised as inner class named ATestCommand of the
enclosing class AllTestClasses. In the second line another command is
provided which is called MyTestCommand2 and is presented by the class
AtestCommandClass.

jadice document platform Version 4.2.x Page 84 of 93

D e v e l o p e r ' s g u i d e

!

!

jadice 4.2.

8.2. The file „menucomponents.properties“
The menucomponents-configuration defines the structure of menus, sub-
menus, context-menus and toolbars, called structures in the following. In the
following paragraph 8.3.The file “actions.properties“ a corresponding
actions.properties is defined which describes the properties of the
CommandActions.

The syntax of a structure may now be described as follows, considering thatthe
black-written „name“ is a freely defined, but unique structure identifier. Red
statements are fixed expressions:

Option Purpose

Definition of a structure

name.name=TestMenuName Name of a structure. With menus it is
additionally used as menu name for
displaying in a menubar.

name.actions=CommandName1, CommandName2 Definition of the commands contained in the
structure which are used to create menu
inputs or toolbuttons. Commands are
provided as a comma-separated list. This
way of definition may be used for all
structures.

name.actions.toolbar=CommandName1,CommandName2 Analogical definition of the contained
commands, especially only for toolbar
structures.

name.actions.contextmenu=CommandName1,
CommandName2

Analogical definition of the contained
commands, especially only for context
menus.

name.actions.menu=CommandName1, CommandName2 Analogical definition of the contained
commands, especially only for menu
structures.

name.menuState= Only for checkbox / radiobutton menu
items.
Describes the initial selection state.
Value:
selected
all other statements – not selected

name.menuType= Only for menu items:
Without specification a normal menu item is
created.

Possible values:
† visibilityEnabled – item which is only

visible, if enabled
† checkbox – checkbox item

† visibilityEnabledCheckbox – checkbox
item which is only visible, if enabled

† radiobutton

jadice document platform Version 4.2.x Page 85 of 93

D e v e l o p e r ' s g u i d e

jadice 4.2.

Option Purpose

† visibilityEnabledRadiobutton –
radiobutton item which is only visible, if
enabled

† iconmenu – simple menu item
according to set look & feel with icon
displaying, if set

† without specification – simple menu item
according to set look & feel, without icon

Structure defining settings

{name} Substitution part-menu

{>name} Substitution sub-menu

| Separator

Hereto an example:

PartMenu.actions=Command1,Command2
SubMenu.actions=Command4,Command3
SubMenu.name=a SubMenu
SuperMenu.actions=Command5,|,{PartMenu},|,{>SubMenu}
SuperMenu.name=a super menu

With the definition above a menu titled „a super menu“ is created that consists
of Command5, a separator, Command1, Command2, another separator and a
submenu named „a SubMenu“ which is composed of Command4 and
Command3.

The indication of the corresponding configuration file actions.properties is
defined as follows:

resource.defaultactions=/com/levigo/jadice/resources/prope
rties/actions.properties
resource.actions.default=defaultactions

Further action configurations may be specified as follows:

resource.moreActions=/my/action/definitions/actions.proper
ties

In order to differentiate, if a command is defined by the default-action
configuration or any other configuration, the configuration identifier is prefixed.

Example:

PartMenu.actions=Command1,moreActions .Command2

Here the part-menu consists of Command1, defined by the default-action
configuration, and Command2, defined by the configuration named
moreActions.

jadice document platform Version 4.2.x Page 86 of 93

D e v e l o p e r ' s g u i d e

jadice 4.2.

8.3. The file “actions.properties“
The file actions.properties describes the properties of CommandActions. This
involves e.g. which commands are to be activated in which order for the
action's performance, which icon is to be displayed, if a tooltip is to be offered,
etc.

Additionally a corresponding command configuration (commands.properties)
and an icon description are each indicated by

icon description
icons.defaulticons=/com/levigo/jadice/resources/graphics/j
adice-viewer
resource.icons.default=defaulticons
Commands configuration
resource.commands=/com/levigo/jadice/resources/properties/
commands.properties
resource.commands.default=commands

As also in the menucomponent.properties further action configurations may be
defined, it is possible to define different command configurations in the
action.properties.

Example:

resource.mycommands=/my/command/definitions/commands.prope
rties

Please compare also 8.1.The file „commands.properties“ and 8.2.The file
„menucomponents.properties“.

The possible specifications per action are listed in the following table,
considering that the black written „name“ is a freely defined, but unique action
identifier. Red statements are fixed expressions:

Option Purpose

Definition of a Command Action

name.SmallIcon=defaulticons.TB_OPEN Icon definition referred to defaulticons-
reference.
Example:
TB_OPEN – icon name in icon reference

name.commands= Comma-separated list of commands which
are to be activated in the actionPerformed
method.

name.ShortDescription=short description Name, e.g. for menu entry

name.LongDescription= description text Tooltip text, specifications may be provided
in HTML.

name.AcceleratorKey= VK_N + CTRL_MASK Only for menu items:
Hot Key for menu items
Modifier plus key
Alt-, Shift- or Ctrl-Mask + KeyEvent.Key
Analogical identifier as provided by the class
KeyEvent92 or the class InputEvent93 are to

jadice document platform Version 4.2.x Page 87 of 93

D e v e l o p e r ' s g u i d e

jadice 4.2.

Option Purpose
be used.

name.MnemonicKey= VK_N Only for menu items:
Mnemonic key for navigation through
menus.
Note:
Mnemonic keys are always connected with
the modifier ALT-MASK.

name.InputMap= VK_PLUS Entry in InputMap of context owner in
mode:„WhenInFocused-Window“.
If no component of the used component's
hierarchy consumes the indicated key-
event, the event is used to activate the
command. Key bindings preallocated by the
used look&feel principally priorize command
bindings.

Key combinations may be indicated by
different key identifiers connected with a
plus sign.
Example:
SHIFT_MASK + VK_A
creates an entry in the InputMap which
effects a command at the key-event Shift-A.

Note:
KeyBindings predefined by the system or by
the used look&feel principally priorize the
specifications made here. If a KeyBinding is
to be configured differently as provided by
the system or the look&feel, the integrator
has to make sure that the predefined
KeyBindings have been removed. Principally
jadice does not change by itself any
predefined settings.

8.4. The file „jadice-viewer.properties“
All icons of the jadice package have been combined in a PNG-file (jadice-
viewer.png) because of lucidity and resource improvement. Being a web format
PNG can display icons very well (alpha channel with variable transparency,
gamma correction and similar) with an optimised compression which is between
5% to 25% better than GIF.

Adapted icons need not to be provided in PNG format, in the same way GIF and
JPEG formats are also supported.

The jadice-viewer.properties configuration describes the provided icons in a
body. In this table, too, the red statements are fixed expressions.

92 java.awt.event.KeyEvent
93 java.awt.event.InputEvent

jadice document platform Version 4.2.x Page 88 of 93

D e v e l o p e r ' s g u i d e

jadice 4.2.

Option Purpose

extension=png Format of icon file; the icon file has got the
same name like the configuration, the suffix
results from the format.
Possible values:
png, gif, jpeg

icon.name.rectangle=0,0,24,24 Where in the icon file is the corresponding
icon with the name „name“?
All icons are described in position and
dimension by this specification.

name is a freely selectable, but unique
identifier for this icon and is used in the
configuration actions.properties as
reference.

Example:
0,0 corresponds to origin of icon position.
24,24 corresponds to icon dimension.

jadice document platform Version 4.2.x Page 89 of 93

D e v e l o p e r ' s g u i d e

jadice 4.2.

9. jadice Public API and internal Packages

9.1. jadice Public API
jadice® document platform offers to developers and integrators a powerful
Public API for integration in specific applications and solutions of customers.
Current Javadoc information of the Public API are provided in the distribution in
the directory

<distributiondirectory>/javadoc .

This directory contains several Jar-files with Javadoc information about the
Public API of the different modules of the jadice® document platform.

All classes and methods contained and described in these Javadoc
documentations are part of the Public jadice® API and may be used freely to
integrate jadice® components and functionalities.

The classes, methods and functionalities – described by the Javadoc
information - of the Public jadice® API are fully supported and maintained by
levigo solutions.

In case of questions or problems with the Public jadice® API or if additional
information about further modules are required, integrators or developers may
address levigo solutions at any time. We would like to support you.

9.2. Jadice Private API
Apart from the Public API the distribution package contains internal classes,
methods, functionalities and part-functionalities with the following name
.internal..

These structures are part of the internal Private jadice® API and must not be
used directly by developers and integrators.

levigo solutions reserves the right to delete, remove, rename or to change in its
functionality all contents of the Private jadice® API, classes, methods and
functionalities. There is no guarantee that the classes, methods and
functionalities of the Private jadice® API are completely provided regarding
single versions or releases.

Technical support in case of problems due to the direct use of the Private
jadice® API is excluded from the software maintainance and will not be
supported in any case.

Any direct use of the internal Private jadice® API frees levigo solutions from all
warranty and liability claims. levigo solutions is not liable in any way for all
direct, indirect, accidental, special, exemplary or other dammage which occurs
or might occur by the direct use of the internal Private jadice® API.

jadice document platform Version 4.2.x Page 90 of 93

D e v e l o p e r ' s g u i d e

!

jadice 4.2.

10. Document history

Version Date Author Modifications

0.1 14.07.03 Oliver Suck Developer's documentation of Vs 2.x as template

16.07.03
Jörg Henne - New in Version 3.x

- Document / Layer concepts

06.08.03

Carolin Köhler - Online Service
- 2.2 Extension of concepts and descriptions
- 2.3 Format updating

28.08.03
Carolin Köhler - Updates

- Viewer part1

29.08.03

Carolin Köhler - Viewer part2
- Document
- Demonstration classes

01.09.03

Carolin Köhler - Page
- PageSegment
- Loader

02.09.03

Carolin Köhler - Loader description: resources
- ResourceLoader in general
- Annotations' hierarchy

08.09.03 Carolin Köhler - RenderContext

09.09.03

Carolin Köhler - ResourceLoader, hierarchy, diagramme
- ResourceFileLoader
- ResourceURLLoader
- ResourceGroupLoader
- ResourceMultiLoader
- LoadListener

10.09.03 Carolin Köhler - SeekableInputStreams, diagramme

15.09.03

Carolin Köhler - FormatInfo, FormatFile
- ImagePlusAnnotationFormatInfo
- ImagePlusAnnotationFile

16.09.03 Carolin Köhler - JadiceBookmark

17.09.03 Carolin Köhler - BookmarkPanel

18.09.03

Carolin Köhler - SeekableInputStreams
 - RandomAccess, FileInput, Memory
- BookmarkPanel subsections
- JadiceBookmarkHandler
 - Involved classes
- PageSorter

19.09.03

Carolin Köhler - EditPanes
- PrinterJava2
- NavigatorPanel

22.09.03 Carolin Köhler - AddOns, creation, call, integration
- Navigator part 2
- Lens

jadice document platform Version 4.2.x Page 91 of 93

D e v e l o p e r ' s g u i d e

jadice 4.2.

Version Date Author Modifications

- HoverLens
- GradationCurveControl
- GradationCurve
- GradationCurveFileHandler
- Demo class revise

23.09.03
Carolin Köhler - correction, revision, rounding off chapter 1, 2, 4

- preparation chapter 5, 6

24.09.03

Carolin Köhler - chapter 6 finished
- BasicJadicePanel, AbstractJadicePanel
- preparation chapter 3

25.09.03

Carolin Köhler - chapter 5.1
- chapter 5.2.1
- chapter 5.2.2
- chapter 5.2.3
- chapter 5.2.4
- chapter 5.2.5
- chapter 5.2.6
- chapter 5.2.7
- chapter 5.2.8

26.09.03

Carolin Köhler - chapter 5.5
- chapter 5.5.1
- chapter 5.5.2
- chapter 5.5.3

29.09.03

Carolin Köhler - chapter 5.3.1
- chapter 5.3.2
- chapter 5.3.3
- chapter 5.3.4
- chapter 7
- chapter 7.0.1
- chapter 7.0.2
- chapter 7.0.3
- chapter 7.0.4

30.09.03

Carolin Köhler Document corrections, layout
- chapter 3
- chapter 3.1
- chapter 3.2
- chapter 3.3

01.09.03 Carolin Köhler - Revision chapter 4

02.09.03

Carolin Köhler Final corrections, layout
- chapter 5.4
- chapter 5.4.1
- chapter 5.4.2
- chapter 5.4.3

30.10.03 Carolin Köhler - chapters 6,7 extended by new settings

04.11.03 Carolin Köhler - chapter 7 extended by new settings

22.12.03

Carolin Köhler - new template
- Updates and extensions of the jadice package added to
documentation

jadice document platform Version 4.2.x Page 92 of 93

D e v e l o p e r ' s g u i d e

jadice 4.2.

Version Date Author Modifications

19.02.04
Carolin Köhler - different minor corrections

- DocumentSaver

02.03.04 Carolin Köhler - Configuration parameter updated

19.03.04 Carolin Köhler - Hyperlinks updated

26.08.04 Carolin Köhler - Configuration parameter updated

15.09.04 Carolin Köhler - Configuration parameter updated

2.0
06.12.05

Jelkica Ćirilović
Carolin Köhler

Complete revision

28.02.07

F. Fernandes
C. Köhler
J. Ćirilović

Updated to jadice version 3.1

4.1 31.03.08 C. Köhler
J. Ćirilović

Updated to jadice version 4.1

03.07.08 C. Köhler
J. Ćirilović

Updated and translated

4.2 18.02.09 C. Köhler
J. Ćirilović

Updated to jadice version 4.2

jadice document platform Version 4.2.x Page 93 of 93

D e v e l o p e r ' s g u i d e

